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Abstract

Estimating the number of components in finite mixture models (FMMs) is a crit-
ical problem in statistical methodology. While traditional methods often focus on
Gaussian or sub-Gaussian mixtures, real-world data usually exhibit heavier tails. This
paper extends the Stepwise Goodness-of-Fit (StGoF) method (Jin et al., 2022) to lo-
cally independent sub-exponential mixtures. Our method has two main advantages: it
avoids the need for precise parameter estimation, enabling faster computation, and it
supports mixed-type data. We establish theoretical guarantees for exact recovery and
asymptotic consistency, and demonstrate the efficiency and robustness of our approach
through simulations and real-world applications. This work introduces a new method
for estimating the order of locally-independent sub-exponential mixtures, paving the
way for further research.

Keywords: Mixture Models, Sub-Exponential Distributions, Stepwise Goodness-of-Fit,
Clustering.

1 Introduction

Finite mixture models (FMMs) have been extensively studied in the statistical literature,
forming a cornerstone of modern statistical methodology (McLachlan and Peel, 2004; McLach-
lan et al., 2019; Bouguila and Fan, 2020). Representing complex distributions as weighted
sums of simpler components, FMMs provide a flexible and robust framework for modeling
heterogeneous data. This flexibility makes FMMs particularly valuable in uncovering latent
structures, clustering observations, and performing density estimation. Their applications
span numerous fields, including machine learning (Goodfellow et al., 2016), genetics (Bechtel
et al., 1993), and medical research (Schlattmann, 2009). With a rich history of development,
FMMs demonstrate both theoretical depth and practical versatility across disciplines.

†Research conducted under the guidance of Professor Yuqi Gu at Columbia University. This is a working
manuscript that is still being updated. Final authorship: Wenjin Zhang and Yuqi Gu.
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Building upon the versatility and widespread applications of finite mixture models (FMMs),
a critical aspect of their practical implementation is determining the correct number of com-
ponents, or the model’s order. Accurate estimation of the order is essential to ensure model
interpretability and estimation efficiency. An underestimated model fails to capture the
complexity of the data, while an over-specified model introduces unnecessary complexity,
deteriorating estimation rates and parameter reliability. These challenges have spurred ex-
tensive research into methods for estimating the order of FMMs.

Numerous methods have been proposed for estimating the order of FMMs. Likelihood-
based approaches, such as hypothesis testing (McLachlan, 1987; Dacunha-Castelle and Gas-
siat, 1999; Liu and Shao, 2003) and the EM-test (Chen and Li, 2009; Li and Chen, 2010),
focus on evaluating nested models and typically assume prior knowledge of a candidate order.
Information criteria, including AIC (Akaike, 1974) and BIC (Schwarz, 1978), are among the
most widely used techniques, with BIC being particularly favored for estimating the number
of mixture components (Leroux, 1992; Keribin, 2000; McLachlan and Peel, 2004). Exten-
sions, such as the Integrated Completed Likelihood (Biernacki et al., 2000) and Singular BIC
(Drton and Plummer, 2013), have been proposed to address the challenges posed by non-
regular models. More recently, methods such as Group-Sort-Fuse (Manole and Khalili, 2021)
and Evidence Lower Bound maximization (Wang and Yang, 2024) have further advanced
this field. Despite their popularity, likelihood-based methods typically require iterative al-
gorithms like the Expectation-Maximization (EM) algorithm to estimate parameters, which
can be computationally expensive and slow, particularly in high-dimensional settings. Alter-
natively, minimum-distance-based methods (Chen and Kalbfleisch, 1996; James et al., 2001;
Woo and Sriram, 2006; Heinrich and Kahn, 2018) minimize discrepancies between observed
data and candidate models, offering a flexible alternative to likelihood-based techniques.
However, these methods also depend on pre-specified parametric forms for the component
distributions, limiting their ability to address scenarios where the data’s underlying distri-
bution is unknown or mixed.

In addition to the general methods discussed above, much of the existing literature has
focused on specific types of mixture models, particularly Gaussian mixture models (GMMs)
and sub-Gaussian mixture models. GMMs have been extensively studied for their math-
ematical tractability and wide applicability in clustering and parameter estimation under
separation conditions (Vempala and Wang, 2004; Ndaoud, 2018; Zhang and Zhou, 2021;
Chen and Yang, 2021). sub-Gaussian mixture models, on the other hand, address settings
with lighter-tailed distributions, providing strong theoretical guarantees for clustering and
recovery in high-dimensional scenarios (Mixon et al., 2017; Srivastava et al., 2019; Cai and
Zhang, 2018; Abbe et al., 2022).

However, in fields such as finance and economics, data often exhibit heavier tails that can-
not be adequately captured by Gaussian or sub-Gaussian models. sub-exponential mixture
models, with their ability to accommodate such heavy-tailed distributions, offer a more suit-
able framework for these applications. Despite their potential, research on sub-exponential
mixture models remains limited (Dreveton et al., 2024), highlighting the need for further
exploration in both theoretical development and practical methodology.

In a remarkable paper, Jin et al. (2022) propose a stepwise Goodness-of-Fit (StGoF)
method to estimate the number of communities in degree-corrected block models (DCBM).
Their work introduces a stepwise algorithm that alternates between a community detection
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step and a Goodness-of-Fit step for m = 1, 2, . . . . The core idea of this framework is
highly adaptable and can be applied to the context of interest in this paper. Specifically,
we extend the StGoF framework to estimate the order of mixtures, where the variables
are assumed to be conditionally independent given their membership labels, and the noise
follows a distribution with sub-exponential tails. While the assumption of conditional (or
local) independence might seem restrictive at first glance, it actually accommodates a broad
range of well-known models, such as Spherical Gaussian Mixture Models and Latent Class
Models. As such, this assumption not only preserves the generality of our approach but also
ensures analytical tractability.

Our modifications retain the core structure of the algorithm, alternating between com-
munity detection and goodness-of-fit steps, but we adapt both steps to account for the
properties of sub-exponential noise. At each iteration, the community detection step applies
a clustering algorithm to the data, identifying the current partitioning of observations into
clusters. This is followed by a GoF step, where we calculate a test score based on the clus-
tering results from the previous step. While this approach is presented in the context of
sub-exponential mixture models for clarity, it is worth noting that the framework is general
enough to accommodate broader applications beyond locally independent sub-exponential
mixtures, such as Weibull Distribution with k ∈ (0, 1).

In this study, we extend the StGoF framework, originally developed for network analysis,
to the setting of mixture models. Although the core framework remains the same, its impli-
cations are far-reaching. Firstly, our findings demonstrate that the refitted quadrilateral test
statistics introduced by Jin et al. (2022) are not limited to degree-corrected block models but
are also applicable to the mixture models examined herein. Indeed, the scope of this method
is broader, offering significant applicability to a variety of problems that involve estimating
the number of clusters or components. This issue remains an active area of investigation in
our ongoing research.

Secondly, our approach is not contingent upon the specific form of the data distribu-
tion. Given an observed p-dimensional dataset, each dimension can follow an arbitrary
distribution—such as Gaussian, Poisson, or Gamma—provided that each component is Sub-
Exponential. This contrasts with most existing methods, which typically require prior
knowledge of the distributional assumptions. As previously noted, many likelihood-based
techniques rely on explicit assumptions regarding the distribution of each variable. In the
context of mixture models, deviations from these parametric assumptions can lead to subopti-
mal clustering outcomes (Foss et al., 2019). For real-world datasets, such as high-dimensional
mixed-type data, it is often challenging to determine the distribution type of each compo-
nent within a p-dimensional variable. In the case of the gap statistics method (Tibshirani
et al., 2000; Hennig and Lin, 2015), obtaining better results for mixed-type data requires
carefully selecting an appropriate distance metric within the internal criterion. Although
considerable research has focused on hybrid distance metrics (Gower, 1971; Huang, 1998;
Ahmad and Dey, 2011; Hennig and Liao, 2013), the majority of these studies typically con-
sider only numerical and categorical data, without distinguishing between different types of
numerical data, such as continuous and count data. In such cases, these criteria often rely
on simple distance measures to assess the quality of clustering. Given the heterogeneity of
different distribution types, the performance of such methods may not always be optimal,
especially in complex datasets with diverse data types. In this regard, our methodology
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offers a significant advantage by allowing for direct analysis of more complex mixed-type
data.

Finally, another advantage of our approach is its computational efficiency. Unlike likelihood-
based methods, which require iterative optimization to estimate parameters, our method
does not involve such procedures, leading to significantly faster computations. Additionally,
the prediction strength method (Tibshirani and Walther, 2005; Dudoit and Fridlyand, 2002;
Volkovich et al., 2011) requires either cross-validation or resampling, which similarly incurs
substantial computational costs. In contrast, the primary computational costs in StGoF arise
from two steps: a single application of k-means clustering and the computation of a matrix
statistic at each step. These operations enable much faster result computation compared to
methods that require iterative optimization and cross validation.

Organization. The remainder of the paper is organized as follows. Section 2 presents
the mathematical formulation of our method, including the stepwise goodness-of-fit test and
matrix correction procedure. In Section 3, we provide theoretical results on the consistency of
our estimator. Section 4 illustrates the performance of our method through simulations and
real data applications. Section 5 concludes with a discussion of future research directions.
The Supplementary Material contains all technical proofs of the theoretical results.

Notation. For a matrix A, the notation S(A) refers to the symmetric dilation of A, which
is defined as:

S(A) =

(
0 A
AT 0

)
.

The i-th row of A is denoted by ri(A), and the i-th largest singular value of A is represented
by σi(A). The notation A1:m refers to the submatrix consisting of the first m columns of A.
We denote the operator norm of A by ∥A∥, and the infinity norm ∥A∥∞ as the maximum
absolute value of any element in A. When applied to the noise matrix E, the symmetric
dilation is denoted by W = S(E). For the signal matrix P, the singular values are ordered
as σ1 ≥ · · · ≥ σK .

2 Model and Methodology

In this paper, we study a mixture model consisting of K clusters, denoted C1, C2, . . . , CK ,
with each cluster centered at θ∗

1,θ
∗
2, . . . ,θ

∗
K ∈ Rp. The minimum separation between any

two distinct cluster centers is defined as ∆ = mina̸=b ∥θ∗
a − θ∗

b∥. The assignment of the n
observations to these clusters is described by a cluster assignment vector z ∈ {1, . . . , K}n,
where zi indicates the cluster to which observation Xi ∈ R1×p belongs. Let Z represent the

matrix
(
zT1 · · · zTn

)T
. For convenience, we define N = n+ p.

Each observation is generated according to the following model:

Xi = θ∗
zi
+ ϵi, (1)

where ϵ1, . . . , ϵn ∈ R1×p are noise terms. The observations X1, . . . ,Xn are stacked row-wise
into a data matrix X ∈ Rn×p, which can be expressed in matrix form as:

X = P+ E,
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where P := (θ∗
z1
;θ∗

z2
; . . . ;θ∗

zn) is the signal matrix containing the true cluster centers, and
E := (ϵ1; . . . ; ϵn) is the noise matrix. We can rewrite P as ZΘT , where Θ denotes the matrix(
(θ∗

1)
T · · · (θ∗

K)
T
)T

.

Remark 1. The model assumptions in this paper largely follow those proposed in Zhang and
Zhou (2022). Notably, our assumptions differ from the standard ones commonly adopted
in finite mixture models (FMMs). Typically, for FMMs, the assumptions are formulated as
follows: Denoting z∗ ∈ [k]n as the vector of cluster assignments, a mixture model assumes
that the n observed data points X1, . . . ,Xn ∈ X n, where X ⊂ Rd, are independently generated
such that

∀i ∈ [n] : Xi | z∗
i ∼ fz∗

i
,

where f1, . . . , fk are k probability distributions over X (see Dreveton et al. (2024) for a
detailed discussion).

In contrast, our model is more general given membership labels. Specifically, we do not
require the noise distributions within the same cluster to be identical. Furthermore, our
model explicitly defines the cluster centers θ∗

1, . . . ,θ
∗
k. This explicit specification is crucial

because the success of our clustering method depends on exact recovery of the clusters. Con-
sequently, information about the minimum distance between clusters, ∆, is indispensable for
achieving exact recovery. This requirement necessitates the structural design of our model,
which incorporates explicit centers and a clear delineation of cluster separations.

Before presenting the proposed algorithm, we introduce additional assumptions about
the noise terms, which will be used throughout the remainder of this paper.

Assumption 1. The components of the noise vectors ϵ1, . . . , ϵn, specifically the elements
ϵi,j (where 1 ≤ i ≤ n and 1 ≤ j ≤ p), are assumed to be mutually independent. Each ϵi,j
follows a sub-exponential distribution satisfying maxi,j Var(ϵ

2
i,j) ≤ maxi,j ∥ϵi,j∥2ψ1

= σ2 and
Var(ϵi,j) ≥ τ 2, where σ and τ are fixed constants.

Remark 2. At first glance, the assumption Var(ϵi,j) ≥ τ 2 may appear somewhat uncon-
ventional. In fact, this condition is used solely in the proof of Lemma S.1 to establish the
asymptotic normality of a specific statistic. However, it is worth noting that Lemma S.1
is not essential for proving our main result, Theorem 2, and thus this assumption could be
omitted without affecting the validity of the main theorem. We retain this assumption here
because Lemma S.1 is a stronger result that could offer additional insights and potentially
support further developments in this method.

The procedure in our case is summarized in Algorithm 1. Specifically, in the clustering
step of Algorithm 1, we employ a standard spectral clustering method. The statistic zα is
the α-quantile of the standard normal distribution N(0, 1).

As we will demonstrate in Theorem 1 in Section 3, this algorithm achieves exact recovery
provided the following conditions are satisfied:

Assumption 2. There exists a constant α0 ∈ (0, 1) such that |Ck| ≥ α0n for ∀1 ≤ k ≤ K.

Assumption 3. σK = ω(σ(
√
n+

√
p)), ∆ = ω(σ

√
n).
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Algorithm 1: Stepwise Goodness-of-Fit

Require: Data matrix X, σ, β (initialize m = 1)

Ensure: Estimated number of components K̂α

1: Clustering: Perform top-m SVD on X; apply k-means clustering with m clusters to
rows of (UX)1:m ∈ Rn×m; obtain membership matrix Ẑ(m).

2: Matrix Correction: Estimate the signal matrix

P̂(m) = Ẑ(m)
(
(Ẑ(m))T Ẑ(m)

)−1

(Ẑ(m))TX, and apply symmetric dilation to P̂(m), denoted

as S(P̂(m)).
3: Goodness-of-Fit Test: Compute

Q
(m)
N =

∑
i1,i2,i3,i4
distinct

(
S(X)i1,i2 − S(P̂(m))i1,i2

)(
S(X)i2,i3 − S(P̂(m))i2,i3

)
·
(
S(X)i3,i4 − S(P̂(m))i3,i4

)(
S(X)i4,i1 − S(P̂(m))i4,i1

)
.

Calculate CN = 2σ8n
β
2 p

β
2 , and compute the test score ϕ

(m)
N =

Q
(m)
N√
CN

.

4: Termination: If ϕ
(m)
N > zα, increment m and repeat Steps 1–3; otherwise, terminate

and set K̂α = m.
5: return K̂α

These assumptions ensure a sufficiently high signal-to-noise ratio and balanced commu-
nity sizes, which are critical for the algorithm to achieve exact recovery of the true community
structure.

Additionally, the GoF step is based on the refitted quadrilateral test statistic proposed
in the original paper, but we make slight modifications to adapt it to our case. Specifically,
in Jin et al. (2022), the data matrix is square. In contrast, we handle non-square matrices by
applying symmetric dilation, after which the test score is computed based on the resulting
square matrix. Furthermore, we make adjustments to the final test score to address the
challenges specific to our setting.

Our algorithm has a distinct advantage in that it does not rely on the specific type of noise
distribution. Unlike traditional likelihood-based methods, which require explicit likelihood
computations, our approach is likelihood-free. This eliminates the need for complex like-
lihood evaluations, significantly improving computational efficiency. Moreover, traditional
methods often depend on identifying an appropriate distribution for the data, as the per-
formance of these methods heavily relies on the correctness of the assumed distribution. In
contrast, our algorithm bypasses this requirement, allowing it to perform robustly without
explicit distributional assumptions.

Additionally, this flexibility enables our method to handle mixed-type data, where the
noise can come from heterogeneous or mixed distributions. This generalization broadens the
applicability of our approach to a wider range of practical scenarios, where data types and
noise characteristics are not uniform or well-defined.

Compared to the degree-corrected block models (DCBM) analyzed in the original paper
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(Jin et al., 2022), our model, while not incorporating degree heterogeneity, features a pa-
rameter space defined by a K× p matrix. This parameterization is substantially larger than
the K × K probability matrix in DCBM, introducing significant complexity. As a result,
deriving a null distribution that adheres to N(0, 1) becomes substantially more challeng-
ing. Additionally, our noise is sub-exponential with an unknown variance σ, adding another
layer of difficulty compared to the simpler Bernoulli-distributed noise assumed in SBM.
These challenges complicate the construction of an accurate hypothesis testing framework.
Consequently, we adopt the current form of the test score, while recognizing that further
improvements remain an interesting direction for future research.

In practice, the variance σ2 is often unknown and cannot be directly determined in
many cases, necessitating adjustments to the test statistic to account for this uncertainty.
However, we retain the current form of the test score because, for certain types of noise,
σ can be explicitly determined. For instance, if the noise follows a bounded distribution
within the interval [a, b], such as a Bernoulli distribution, the variance σ2 can be expressed

as (b−a)2
4

. Similarly, for a Poisson distribution, the variance is equal to the mean, allowing it
to be estimated directly from the data matrix. These examples demonstrate that the method
accommodates specific cases where noise characteristics are known, ensuring the validity of
the test under such conditions.

In general, estimating σ is required before running this algorithm. However, it is evident
that estimating σ becomes impossible if the noise terms are drawn from completely distinct
distributions. Therefore, we adopt a common assumption in clustering mixture models,
where noise terms associated with the same cluster center come from the same distribution.
Thus, Assumption 1 is modified to:

Assumption 1’. The components of the noise vectors ϵ1, . . . , ϵn, specifically the elements
ϵi,j (where 1 ≤ i ≤ n and 1 ≤ j ≤ p), are assumed to be mutually independent. For
j = 1, . . . , p, the noise terms ϵ1,j, . . . , ϵn,j are independently drawn from K distinct sub-
exponential distributions F1, . . . , FK. Each noise term satisfies ϵi,j ∼ Fzi, where zi represents
the cluster assignment for the i-th observation. The sub-exponential distributions Fk (for
k = 1, . . . , K) satisfy supk=1,...,K ∥x ∼ Fk∥ψ1 ≤ σ, where σ is a fixed constant. Moreover, the
variance of the noise terms satisfies Var(ϵi,j) ≥ τ 2 for all i, j, where τ > 0 is a constant.

Under this assumption, we can use any standard variance estimator to estimate σ in each
iteration based on the clustering result from step (a). This estimate is then used to update

CN in the algorithm, replacing it with ĈN = 2σ̂8n
β
2 p

β
2 .

For example, we may estimate σ̂ as follows:

σ̂ = max
1≤j≤p

max
1≤i≤m

{

∑
l∈C(m)

i
(Xl,j − 1

|C(m)
i |

∑
s∈C(m)

i
Xs,j)

2

|C(m)
i | − 1

},

where C
(m)
1 , . . . , C

(m)
m are pseudo communities obtained by step (a).

Given that the community detection method achieves exact recovery and the community
sizes are balanced under Assumption 1, this estimator provides a proper estimate of σ when
m = K.

If m ̸= K, the estimator may deviate from the true upper bound of the sub-exponential
noise norms. However, any deviation will only lead to an underestimate of the true σ. As we
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will show in Theorem 3, this underestimation does not affect the final asymptotics of ϕ
(m)
N ,

and thus consistency will still hold.
Thus, we propose an alternative formulation of the Stepwise Goodness-of-Fit procedure in

Algorithm 2, which is applicable in the absence of prior knowledge regarding σ. Furthermore,
the estimation of σ can be adapted to any suitable method of estimation.

Algorithm 2: Modified Stepwise Goodness-of-Fit

Require: Data matrix X, β (initialize m = 1)

Ensure: Estimated number of components K̂α

1: Clustering: Perform top-m SVD on X; apply k-means clustering with m clusters to
rows of (UX)1:m ∈ Rn×m; obtain membership matrix Ẑ(m).

2: Matrix Correction: Estimate the signal matrix

P̂(m) = Ẑ(m)
(
(Ẑ(m))T Ẑ(m)

)−1

(Ẑ(m))TX, and apply symmetric dilation to P̂(m), denoted

as S(P̂(m)).
3: Goodness-of-Fit Test: Compute

Q
(m)
N =

∑
i1,i2,i3,i4
distinct

(
S(X)i1,i2 − S(P̂(m))i1,i2

)(
S(X)i2,i3 − S(P̂(m))i2,i3

)
·
(
S(X)i3,i4 − S(P̂(m))i3,i4

)(
S(X)i4,i1 − S(P̂(m))i4,i1

)
.

Calculate ĈN = 2σ̂8n
β
2 p

β
2 , where

σ̂ = max1≤j≤pmax1≤i≤m{
∑

l∈C
(m)
i

(Xl,j− 1

|C(m)
i

|

∑
s∈C

(m)
i

Xs,j)
2

|C(m)
i |−1

}, and compute the test score

Q
(m)
N√
ĈN

.

4: Termination: If ϕ
(m)
N > zα, increment m and repeat Steps 1–3; otherwise, terminate

and set K̂α = m.
5: return K̂α

3 Theoretical Guarantee

Following a similar approach as in the proof of Jin et al. (2022), we first need to establish
the Non-Splitting Property (NSP) of the spectral clustering method. This property not only
ensures that our method can achieve exact recovery of communities but also serves as a
foundational result for analyzing the clustering behavior in underfitting cases. To proceed,
we introduce the following definitions.

Definition 1. Fix K > 1 and m ≤ K. We say that a realization of the n × m matrix of
estimated labels Ẑ(m) satisfies the NSP if for any pair of nodes in the same (true) community,
the estimated community labels are the same (i.e., each community in Z is contained in a

community in the realization of Ẑ(m)). When this happens, we write Z ⪯ Ẑ(m).
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From the definition, it follows that if a clustering method satisfies the NSP, then when it is
tasked with partitioning the data into m clusters (m < K), the resulting clusters are formed
by merging one or more true clusters from the original data. Consequently, the number
of possible estimated membership label configurations in underfitting cases is significantly
reduced. This simplification provides considerable convenience for our subsequent proofs, as
it narrows the range of scenarios that need to be considered.

As introduced in Jin et al. (2022), the NSP is a challenging property to establish. How-
ever, they provide a ”stronger version of the k-means theorem,” specifically Theorem 4.1 in
their paper, which is highly useful. Leveraging this theorem, it is not difficult to show that
the spectral clustering method described in Section 2 satisfies the NSP with high probabil-
ity. In fact, this result is not limited to the specific case considered here; it can be similarly
proven for many low-rank models with exact membership. The key lies in the property that
the left singular vector matrices of the data matrix and the signal matrix differ by at most an
orthogonal matrix, with their discrepancy being small. This property has been extensively
studied, and for cases where the data matrix is bounded, the needed conclusion can almost
directly follow by combining Theorem 4.1 in Jin et al. (2022) and Theorem 4.4 in Chen et al.

(2021). Specifically, in our case, we have the following theorem, where Ẑ(m) represents the
membership labels obtained from spectral clustering:

Theorem 1. With probability at least 1 − O(n−5), for ∀1 < m ≤ K, Z ⪯ Ẑ(m) up to a
permutation in the columns.

This result enables us to establish a theoretical guarantee for the consistency of our
method under the following mild assumptions,

Assumption 4. Each entry in the signal matrix P is bounded by a constant CP , i.e., |Pi,j| ≤
CP for all i and j.

Assumption 5. As n and p increase, the ratio n
N

is uniformly bounded both below and above
by constants C1 and C2, i.e., C1 ≤ n

N
≤ C2 for some constants C1 > 0 and C2 > 0.

The first assumption is mild as it simply assumes that each entry of the cluster centers is
bounded, which is a reasonable condition in most practical settings. The second assumption
is also quite flexible, as it only requires that n and p grow at comparable rates, with their
ratio being bounded both below and above. This condition ensures that n and p neither
grow disproportionately large nor deviate significantly in scale.

Under the aforementioned assumptions, we now present the following theoretical guaran-
tees for our method. In the theorems below, the statistic ϕ

(m)
N is constructed as described in

Algorithm 1. As previously mentioned, if we establish the result for this construction, then
ϕ
(m)
N defined in Algorithm 2 will also satisfy the same asymptotic properties.

Theorem 2 (Null case: m = K). Fix 0 < α < 1. As n → ∞, we have:

P(ϕ(K)
n ≤ zα) ≥ 1− α + o(1),

and
P(K̂α ≤ K) ≥ 1− α + o(1).
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It follows that K̂∗
α is a level-(1-α) confidence lower level for K.

Theorem 3 (Underfitting case: m < K). Fix 0 < α < 1. As N → ∞, we have:

min
1≤m<K

{ϕ(m)
N } → ∞ in probability,

and
P (K̂α ≤ K) ≤ 1− α + o(1).

Now if we let α depend on N and tend to 0 slowly enough, then we have proved P(K̂∗
α =

K) → 1. These results establish the asymptotic consistency of our method for both the null
and underfitting cases, providing theoretical guarantees for its performance as N → ∞.

Remark 3. From our subsequent theorem proofs, it becomes evident that while we follow the
formulation in Jin et al. (2022) by writing zα, this term can, in practice, be replaced by any
constant. In principle, zα can also serve as a tuning parameter, offering additional flexibility
in the application of our method.

4 Numerical Studies

4.1 Theoretical Verification

We begin with numerical experiments to validate the asymptotic properties established in
Theorems 2 and 3, particularly focusing on the theoretical constraint β ∈ (4, 8). Our sim-
ulations aim to demonstrate that only within this range does the test statistic exhibit the
desired asymptotic behavior: diverging to infinity in underfitting cases while converging to
zero under the null hypothesis as N → ∞.

To comprehensively evaluate the theoretical findings, we conduct extensive simulation
studies across diverse model frameworks. The experiments encompass three distinct noise
distributions—Bernoulli, Gamma, Gaussian, and Poisson—enabling us to assess the method’s
robustness and consistency under varied stochastic conditions.

We implement a mixture model with K = 4 components in high-dimensional settings.
The data generation process consists of two phases: signal generation and noise incorpora-
tion.

In the signal generation phase, we first generate K cluster centers uniformly from the
hypercube [−10, 10]p. Each sample is then assigned to one of the K clusters, following a
discrete uniform distribution with a probability of 1/K for each cluster.

In the noise incorporation phase, the noise component is introduced according to one of
four scenarios:

• Bernoulli Noise Setting: For each entry (i, j), we add centered Bernoulli noise
ϵij = B(pij) − pij, where pij is uniformly sampled from [0.1, 0.9]. This introduces
binary, bounded perturbations with a maximum theoretical variance of 0.25.
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• Gamma Noise Setting: For each entry (i, j), we add centered Gamma noise ϵij =
Γ(aij, bij) − aijbij, where aij and bij are chosen such that their product is uniformly
sampled from [0.5, 5]. This introduces asymmetric perturbations with a maximum
theoretical variance of 125.

• Gaussian Noise Setting: For each entry (i, j), we introduce centered Gaussian
noise ϵij ∼ N(0, σij), where σij is uniformly sampled from [1, 100]. This represents
continuous, symmetric perturbations with heteroscedastic variance.

• Poisson Noise Setting: We incorporate centered Poisson noise ϵij = P (λij) − λij
for each entry (i, j), where the intensity parameter λij is uniformly sampled from
{1, . . . , 100}. This generates discrete, asymmetric perturbations with heavy-tailed
characteristics.

The denominator of the test score takes the form
√
σ8Nβ, where both σ and β play

crucial roles in its asymptotic behavior. For σ, we employ the theoretical upper bounds of the
respective noise variances: σ = 100 for both Poisson and Gaussian settings (corresponding
to their maximum variances), σ = 0.25 for the Bernoulli setting (matching its theoretical
maximum variance), and σ = 125 for the Gamma setting (matching its theoretical maximum
variance).

To investigate the impact of β, we examine five values: β = 4, 5, 6, 7, 8. For each com-
bination of β and noise type, we analyze the behavior of the test statistic across varying
sample sizes, with dimension p = 10n for n ∈ {50, 100, . . . , 1000}. To ensure stability, each
configuration is replicated 100 times, and we present the averaged test scores.

The simulation results are presented in Figures 1–4. For each noise type and each value
of β, we use dual y-axes to display all test statistics in one plot: the left y-axis (black)
corresponds to the underfitting cases (m < K), while the right y-axis (purple) corresponds
to the null case (m = K).

The results demonstrate remarkable consistency across all three noise types. For β =
5, 6, 7, in underfitting cases (m < K), the test statistics diverge to infinity as the sample
size increases; in contrast, for the null case (m = K), the test score converges to 0 as the
sample size increases. This pattern holds regardless of the noise distribution, demonstrating
the robustness of our method. However, this pattern breaks down at the boundary cases:
when β = 4, the test scores fail to converge to 0 in the null case, and when β = 8, the test
scores fail to diverge to infinity in the underfitting cases, as expected.

Remark 4. In fact, in certain scenarios (e.g., when the noise within the same cluster is
identically distributed), we have also observed that under the null case, the test score decreases
as n increases when β = 4. However, given the counterexamples provided above, it may be
unlikely to establish, in general, conclusions such as Theorems 2 and 3 when β = 4 or β = 8.

4.2 Performance Comparison

We evaluate the accuracy of our proposed method compared to the Bayesian Information
Criterion (BIC) method under varying values of n, ∆, and n/p. We also attempted to
incorporate the method described in Manole and Khalili (2021) into the comparison by
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β = 4 β = 5 β = 6

β = 7 β = 8

Figure 1: Test scores under Bernoulli noise for different values of β. For each subplot, the left
y-axis (black) corresponds to underfitting cases (m = 1, 2, 3), while the right y-axis (purple)
corresponds to the correct specification (m = 4).

β = 4 β = 5 β = 6

β = 7 β = 8

Figure 2: Test scores under Gamma noise for different values of β. For each subplot, the left
y-axis (black) corresponds to underfitting cases (m = 1, 2, 3), while the right y-axis (purple)
corresponds to the correct specification (m = 4).
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β = 4 β = 5 β = 6

β = 7 β = 8

Figure 3: Test scores under Gaussian noise for different values of β. For each subplot, the left
y-axis (black) corresponds to underfitting cases (m = 1, 2, 3), while the right y-axis (purple)
corresponds to the correct specification (m = 4).

β = 4 β = 5 β = 6

β = 7 β = 8

Figure 4: Test scores under Poisson noise for different values of β. For each subplot, the left
y-axis (black) corresponds to underfitting cases (m = 1, 2, 3), while the right y-axis (purple)
corresponds to the correct specification (m = 4).
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utilizing their publicly available R package, GroupSortFuse. The package supports Poisson
mixture models, but it is limited to one-dimensional settings and cannot handle higher-
dimensional data. For Gaussian mixture models, the package can only handle models where
the variances are the same, which is a significant limitation for our experiments. Due to
these constraints, we ultimately chose not to include this method in our benchmarks. 1

We ultimately selected BIC as the benchmark for the comparisons presented in this
section. To compute BIC, we used the flexmix package in R, which supports only high-
dimensional Gaussian and Poisson mixture models. As a result, we limited our comparisons
to these two types of noise.

In this subsection, the StGoF method we employed follows Algorithm 2, where we esti-
mate σ directly, assuming no prior knowledge of σ. Additionally, for both BIC and StGoF,
we used the same upper bound for K to ensure a fair comparison of computational efficiency
in Section 4.2.4.

4.2.1 Gaussian Mixture Models

In this experiment, we fixed K = 3 and considered nine combinations of (n, p) values. These
combinations were grouped into three categories based on the ratio n

p
= 1

5
, 1, 5. For each

(n, p) pair, we further examined five different values of the minimum distance between cluster
centers ∆. For each combination of (n, p,∆), we first generated K cluster centers uniformly
within the hypercube [200, 400]p. To ensure that the minimum distance between cluster
centers was exactly ∆, the initial centers were scaled proportionally. Each sample was then
assigned to one of the K clusters, following a discrete uniform distribution where each cluster
was selected with a probability of 1/K.

After generating the cluster centers, we added independent noise drawn from N(0, 1) to
each component of the cluster centers, resulting in a data matrix. This process was repeated
100 times. For each of the 100 datasets, we applied both the BIC and StGoF methods to
estimate K and computed the accuracy of the estimates. The final results are presented in
Figure 5.

From the figure, it can be observed that StGoF consistently outperforms BIC in most
settings. This advantage is particularly pronounced in scenarios with smaller n

p
ratios, where

StGoF successfully predicts K even under more challenging conditions where BIC fails to
provide accurate estimates.

4.2.2 Poisson Mixture Models

Similar to the Gaussian mixture models described in the previous section, we fixed K = 7
and considered nine combinations of (n, p) values, grouped into three categories based on
the ratio n

p
= 1

5
, 1, 5. For each (n, p) pair, we further examined five different values of the

minimum distance between cluster centers ∆.
In the case of Poisson mixture models, each cluster center corresponds to a p-dimensional

rate parameter vector for a Poisson distribution. Specifically, for each of the K clusters, we
first generated a p-dimensional vector of rate parameters uniformly within the hypercube

1Due to time constraints, we were unable to fine-tune the method, but future comparisons may address
this issue.
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n
p
= 5 n

p
= 1 n

p
= 1

5

Figure 5: Performance comparison of StGoF and BIC in Gaussian mixture models: Solid
lines represent StGoF, and dashed lines represent BIC. The accuracy is plotted against ∆
for different values of n.

[1, 10]p. To ensure that the minimum distance between the cluster centers was exactly ∆,
the initially generated cluster centers were then scaled proportionally. After scaling the
cluster centers, each sample was assigned to one of the K clusters with a probability of 1/K,
and data points for each cluster were sampled independently from a Poisson distribution in
each dimension, with the corresponding rate parameter for that dimension.

After generating the data, we applied both the BIC and StGoF methods to estimate K
for each of the 100 generated datasets and computed the accuracy of the estimates. The
final results are presented in Figure 6, where we compare the performance of both methods
under different experimental settings.

n
p
= 5 n

p
= 1 n

p
= 1

5

Figure 6: Performance comparison of StGoF and BIC in Poisson mixture models: Solid lines
represent StGoF, and dashed lines represent BIC. The accuracy is plotted against ∆ for
different values of n.

As can be seen, the accuracy of StGoF improves rapidly with an increase in ∆. In
contrast, the performance of BIC using R’s flexmix package is less satisfactory, especially
for relatively larger values of K.2.

2Based on my tests, BIC performs reasonably well for smaller values of K.
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4.2.3 Multi-distribution Mixture Models

In this experiment, we follow a similar data generation process as described in the previous
sections, but with a few key differences. The combinations of (n, p) values are divided
into three groups based on the ratio n/p = 1/5, 1, 5, resulting in a total of nine distinct
combinations. For each combination of (n, p), five different values of the minimum distance
between cluster centers (∆) are considered. Each of the (n, p,∆) combinations is then
repeated 100 times to compute the accuracy of the clustering method.

In this case, we set K = 7 clusters. The process of generating the cluster centers begins
by first selecting K cluster centers within the hypercube [−10, 10]p. These initial centers are
then scaled to ensure that the minimum distance between them is exactly ∆.

The data generation for each sample proceeds as follows. First, for each cluster, a corre-
sponding p-dimensional vector of noise parameters is generated from a uniform distribution
between 1 and 10. This vector of noise parameters corresponds to the variance for each
cluster in each dimension.

For each sample, the p dimensions are randomly split into two groups: p/2 dimensions will
be assigned Poisson noise, and the remaining p/2 dimensions will be assigned Gaussian noise.
For the p/2 dimensions assigned to Poisson noise, the data points are sampled from a Poisson
distribution with the corresponding rate parameters drawn from the noise parameter vector
for that cluster. For the remaining p/2 dimensions, Gaussian noise is applied, where the
data points are sampled from a normal distribution with zero mean and variance determined
by the corresponding noise parameter vector.

In our experiments, we compare the clustering results obtained from our proposed method
with those from the gap statistics approach (Tibshirani et al., 2000). We applied the ClusGap
function from the R package, using kmeans as the clustering algorithm and setting the number
of bootstrap iterations to 100 (B=100). The gap statistic was calculated for different numbers
of clusters, and the optimal number of clusters was determined based on the gap statistic
values.

Remark 5. Utilizing PAM instead of k-means can improve clustering accuracy; however,
this comes at the expense of computational efficiency.

The results from this method are presented in Figure 7. In most cases, our method
outperforms the gap statistics approach, especially as the sample size n and parameter ∆
increase.

4.2.4 Computational Efficiency

In this subsection, we evaluate the computational efficiency of our proposed method com-
pared to BIC, based on the experiments described in Section 4.2.1. The computational time
for each combination of (n, p,∆) was averaged over 100 runs. To streamline the presentation,
we selected three representative values of ∆ for each pair (n, p). The results are visualized in
Figure 8 as logarithmic computational time plotted against n. From the figure, it is evident
that our method is significantly faster than BIC, often achieving runtimes that are approx-
imately two orders of magnitude smaller. This stark contrast highlights the efficiency and
practicality of our approach in these scenarios.

16



n
p
= 5 n

p
= 1 n

p
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Figure 7: Performance comparison of StGoF and gap statistics approach in Multi-
distribution mixture models: Solid lines represent StGoF, and dashed lines represent gap
statistics approach. The accuracy is plotted against ∆ for different values of n.

n
p
= 5 n

p
= 1

n
p
= 1

5

Figure 8: Logarithmic computational time as a function of n for three values of ∆. The
comparison demonstrates the superior efficiency of our proposed method (solid lines) over
BIC (dashed lines). These results correspond to the experiments detailed in Section 4.2.1.

4.3 Real Data Analysis

In this subsection, we apply our method to the United States 112th Senate Roll Call Votes
dataset, which records the voting behavior of U.S. senators over J = 486 roll calls. Following
the preprocessing steps described in Lyu et al. (2024), we encode the original categorical
voting data into binary responses and remove senators with excessive missing votes or those
not affiliated with the two major political parties. For the remaining N = 94 senators,
missing entries are imputed probabilistically based on their individual voting patterns.

From our theoretical analysis, it is evident that the guarantees of our method rely on
the assumption of exact recovery, which requires a sufficiently large sample size. In small-
sample scenarios, our method, being significantly faster than traditional likelihood-based
approaches, can serve as a rough estimator for the number of components and provide a
practical initialization for more refined methods. However, the challenge of estimating σ in
such settings necessitates adjustments to enhance robustness.

To address this, we modify the definition of CN to CN = 2nβ/2pβ/2, with β increased to 6,
to compensate for the lack of a reliable σ estimate. Applying this modification to the Senate
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Roll Call Votes data, our method estimates the number of components to be K̂ = 2. This
result aligns with the known political structure of the dataset, which comprises two major
political parties: Democrats and Republicans. This demonstrates the practical utility of our
method in real-world scenarios, particularly as a fast and interpretable tool for exploratory
data analysis.

5 Discussion

The cut-off value of zα in our framework is theoretically grounded, but in practice, it can
be replaced by any constant, depending on the specific context or problem setting. While
increasing n in simulation studies helps mitigate issues related to this cut-off, determining
the appropriate value for real-world data remains challenging. This highlights the need for
more adaptive frameworks that can better account for varying data structures and problem-
specific requirements.

A major difficulty in real-world applications arises from the assumption that data is
generated by adding noise to predefined cluster centers with zero mean. This assumption
works in controlled settings but is overly restrictive for many real-world datasets where
cluster centers are not well-defined. As a result, the test scores may not behave as expected
under the null hypothesis, necessitating more flexible approaches that account for inherent
data variability.

The estimation of the variance parameter σ is another crucial factor influencing the
reliability of test scores. Although σ is treated as constant in our model, real-world data
often deviates from this assumption. Inaccurate estimation of σ can significantly distort
the results, and its estimation typically requires prior knowledge of the clustering structure,
which is often unavailable. Future work could focus on developing methods for robustly
estimating σ without relying on prior clustering knowledge. Such methods would enhance
the flexibility of our approach and improve its performance in real-world scenarios where
the data structure is less predictable. Nevertheless, given the significant computational
advantage of this method, even in its current form, it can still serve as a reliable initialization
for the number of components, even without further modifications.
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Supplementary Material

S.1 Proof of Theorem 2

The second claim follows directly from the first claim. We will focus on the first claim.
As a natural corollary of Theorem 1, we already know

P(Ẑ(K) ̸= Z) → 0 as n → ∞.

Comparing to P̂(K) = Ẑ(K)(ZTZ)−1(Ẑ(K))TX, we introduce the proxies of P̂(K), Q
(K,0)
N

and ϕ
(K,0)
N below:

P̂(K,0) = Z(ZTZ)−1ZTX,

Q
(K,0)
N =

∑
i1,i2,i3,i4(dist)

(S(A)i1,i2 − (S(P̂(K,0))i1,i2)(S(A)i2,i3 − (S(P̂(K,0))i2,i3)(S(A)i3,i4 − (S(P̂(K,0))i3,i4)

(S(A)i4,i1 − (S(P̂(K,0))i4,i1),

ϕ
(K,0)
N = Q

(K,0)
N /

√
CN .

For fixed t ∈ R, |P(ϕ(K)
N ≤ t)− P(ϕ(K,0)

N ≤ t)| ≤ P(Ẑ(K) ̸= Z) → 0 as N → ∞.

Next we will show: for fixed t ∈ R, P(ϕ(K,0)
N ≥ zα) ≥ 1 − α + o(1) as n → ∞. Hence

P(ϕ(K)
N ≥ zα) ≥ 1− α + o(1) as n → ∞.

We define Q̃N =
∑

i1,i2,i3,i4(dist)
Wi1i2Wi2i3Wi3i4Wi4i1 , where W = S(A)− S(P).

We have the following lemma, which will be proved later.

Lemma S.1. Q̃N/

√
Var(Q̃N) → N(0, 1) in law.

Lemma S.2. E[(Q
(K,0)
N − Q̃N)

2] = O(N4)

If we admit lemmas above, then we can rewrite ϕ
(K,0)
N as Q̃N√

8CN
+

(Q
(K,0)
N −Q̃N )√

8CN
. By Lemma

S.2, we know E[(Q
(K,0)
N −Q̃N√

8CN
)2] = O(N4)

σ8Nβ → 0, hence
Q

(K,0)
N −Q̃N√

8CN
→ 0 in probability.

Therefore, for any fixed ϵ such that 0 < ϵ < zα,we have

P(ϕ(K,0)
N > zα) = P(

Q̃N√
CN

+
(Q

(K,0)
N − Q̃N)√

CN
> zα)

= P(
Q̃N√
CN

+
(Q

(K,0)
N − Q̃N)√

CN
> zα, |

(Q
(K,0)
N − Q̃N)√

CN
| > ϵ) + P(

Q̃N√
CN

+
(Q

(K,0)
N − Q̃N)√

CN

> zα, |(Q
(K,0)
N − Q̃N)√

CN
| ≤ ϵ)

≤ P(|(Q
(K,0)
N − Q̃N)√

CN
| > ϵ) + P(

Q̃N√
CN

> zα − ϵ)
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≤ P(|(Q
(K,0)
N − Q̃N)√

CN
| > ϵ) + P(

Q̃N√
Var(Q̃N)

> zα − ϵ)

where the last inequality follows from Var(Q̃N) ≤ CN .
Then we can choose ϵ = zsα where s is slightly larger than 1. Then we have

P(ϕ(K,0)
N > zα) ≤ P(|(Q

(K,0)
N − Q̃N)√

CN
| > sα) + sα = o(1) + sα as N → ∞.

Let s approaches 1, we obtain that P(ϕ(K,0)
N > zα) ≤ α + o(1).

We now proceed to demonstrate that Var(Q̃N) ≤ CN . Consider any ordered quadru-

ple (i, j, k, ℓ) with four distinct indices, there are 8 summands in the definition of Q̃N

whose values are exactly the same; these summands correspond to (i1, i2, i3, i4) ∈ {(i, j, k, ℓ),
(j, k, ℓ, i), (k, ℓ, i, j), (ℓ, i, j, k), (k, j, i, ℓ), (j, i, ℓ, k), (i, ℓ, k, j), (ℓ, k, j, i)}, respectively. We
treat these 8 summands as in an equivalent class. Denote by C(IN) the collection of all
such equivalent classes of four distinct nodes in {1, ..., N}. Then, for any doubly indexed
sequence {xij}1≤i ̸=j≤N such that xij = xji, it is true that

∑
i1,i2,i3,i4(dist)

xi1i2xi2i3xi3i4xi4i1 =

8
∑

C(IN ) xi1i2xi2i3xi3i4xi4i1 . In particular,

Q̃N = 8
∑
C(In)

Wi1i2Wi2i3Wi3i4Wi4i1

. Since Wij and Wi′j′ are independent if (i, j) ̸= (i′, j′) and E[Wij] = 0, the summands are
uncorrelated of each other. As a result,

Var(Q̃n) =64
∑
C(In)

Var(Wi1i2)Var(Wi2i3)Var(Wi3i4)Var(Wi4i1)

= 8
∑

i1,i2,i3,i4(dist)

Var(Wi1i2)Var(Wi2i3)Var(Wi3i4)Var(Wi4i1)

= 8
∑

i1,i2,i3,i4(dist)
|{i1,i2,i3,i4}∩{1,...,n}|=2

Var(Wi1i2)Var(Wi2i3)Var(Wi3i4)Var(Wi4i1)

≤ 2n2p2σ8

= CN .

S.2 Proof of Lemma S.1

For 1 ≤ M ≤ N , define the σ-algebra FN,M = σ({S(X)ij : 1 ≤ i < j ≤ M}) and

YN,M = SN,M − SN,M−1,

where SN,0 = 0 and

SN,M =

∑
(i1,i2,i3,i4)∈C(IM ) Wi1i2Wi2i3Wi3i4Wi4i1√∑

(i1,i2,i3,i4)∈C(IN ) Var(Wi1i2)Var(Wi2i3)Var(Wi3i4)Var(Wi4i1)
.
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It is easy to see that E[SN,M |FN,M−1] = SN,M−1. Hence, {YN,M}NM=1 is a martingale

difference sequence relative to the filtration {FN,M}NM=1, and SN,N =
∑N

M=1 YN,M . To show
SN,N → N(0, 1) as N → ∞, we apply the martingale central limit theorem and check:

(a)
∑N

M=1 E(Y 2
N,M |FN,M−1) → 1 in probability

(b)
∑N

M=1 E(Y 2
N,M1{|YN,M |>ϵ}|FN,M−1) → 0, in probability for any ϵ > 0.

Note that once we have checked that both conditions (a) and (b) are satisfied, then by
the martingale central limit theorem, SN,N → N(0, 1). Hence we have proved Lemma B.1.

It remains to check (a)-(b). For preparation, we first derive an alternative expression of
E(YN,M |FN,M−1). By definition,

YN,M =
1√
DN

∑
(i1,i2,i3,i4)∈C(IM )\C(IM−1)

Wi1i2Wi2i3Wi3i4Wi4i1 ,

where DN =
∑

(i1,i2,i3,i4)∈C(IN ) Var(Wi1i2)Var(Wi2i3)Var(Wi3i4)Var(Wi4i1), and the summa-

tion is over all 4-cycles in C(IM) \ C(IM−1). Note that a cycle in C(IM) \ C(IM−1) has to
include the node M . Hence, we can use the following way to get all such cycles: First, select
2 indices (i, j) from {1, 2, . . . ,M − 1} and use them as the two neighboring nodes of M ;
second, select an index k ∈ {1, 2, . . . ,M − 1} \ {i, j} as the last node in the cycle. This
allows us to write

YN,M =
1√
DN

∑
1≤i<j≤M−1

WMiWMjΓM−1,ij,

where
ΓM−1,ij =

∑
1≤k≤M−1,k /∈{i,j}

WkiWkj.

Conditioning on FN,M−1, {WMiWMj}1≤i<j≤M−1 are mutually uncorrelated and ΓM−1,ij

is a constant. Hence, it follows that

E(Y 2
N,M |FN,M−1) =

1

DN

∑
1≤i<j≤M−1

Γ2
M−1,ijVar(WMiWMj) =

1

DN

∑
1≤i<j≤M−1

Γ2
M−1,ijVar(WMi)Var(WMj).

We now check (a). It suffices to show that

(c) E
[∑N

M=1 E(Y 2
N,M | FN,M−1)

]
= 1

(d) Var
(∑N

M=1 E(Y 2
N,M | FN,M−1)

)
→ 0.

(Then (a) follows by Chebyshev inequality)
Consider (c). The terms in ΓM−1,ij are unconditionally mutually uncorrelated. As a

result,

E[Γ2
M−1,ij] =

∑
k<M,k/∈{i,j}

Var(Wki)Var(Wkj).

24



It follows that

E

[
N∑

M=1

E(Y 2
N,M | FN,M−1)

]
=

1

DN

N∑
M=1

∑
1≤i<j≤M−1

∑
1≤k≤M−1,k /∈{i,j}

Var(Wki)Var(Wkj)Var(WMi)Var(WMj)

=
1

DN

∑
(M,i,j,k)∈CC(IN )

Var(Wki)Var(Wkj)Var(WMi)Var(WMj)

= 1.

This proves (c).
Consider (d). We first decompose the random variable

∑N
M=1 E(Y 2

N,M | FN,M−1) into the
sum of two parts, and then calculate its variance. We have

Γ2
M−1,ij =

∑
k

W2
kiW

2
kj +

∑
k ̸=ℓ

WkiWkjWℓiWℓj,

where k and ℓ range in {1, 2, . . . ,M − 1} \ {i, j}. Now we can have a decomposition

N∑
M=1

E(Y 2
N,M | FN,M−1) = Ia + Ib,

where

Ia =
1

DN

N∑
M=1

∑
i<j≤M−1

∑
k≤M−1

W2
kiW

2
kjVar(WMi)Var(WMj),

and

Ib =
1

DN

N∑
M=1

∑
i<j≤M−1

∑
k,l≤M−1 k,l/∈{i,j}

WkiWkjWℓiWℓjV ar(WMi)V ar(WMj).

Then,

Var

(
N∑

M=1

E(Y 2
N,M | FN,M−1)

)
= Var(Ia)+Var(Ib)+2Cov(Ia, Ib) ≤ (

√
Var(Ia)+

√
Var(Ib))

2.

It suffices to show that both Var(Ia) → 0 and Var(Ib) → 0.
Consider the variance of Ia. In the sum of Ia, all 4-cycles (k, i,M, j) involved are selected

in this way: We first select M , then select a pair (i, j) from {1, 2, . . . ,M − 1} and connect
both i and j to M , and finally select k to close the cycle. In fact, these 4-cycles can be
selected in an alternative way: First, select a V-shape (i, k, j) with k being the middle point.
Second, select M > max(i, k, j) to make the V-shape a cycle. Hence, we can rewrite

Ia =
1

DN

N∑
k=1

∑
1≤i<j≤N i ̸=k,j ̸=k

W2
kiW

2
kj

∑
M>max{i,j,k}

Var(WMi)Var(WMj).
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(bkij :=
∑

M>max{i,j,k}

Var(WMi)Var(WMj)

We now fix k and calculate the covariance betweenW2
kiW

2
kj andWki′Wkj′ for (i, j) ̸= (i′, j′).

There are three cases.
Case (i): (i, j) = (i′, j′). In this case, Var(W2

kiW
2
kj) ≤ E[W4

kiW
4
kj] = E[W4

ki]E[W4
kj] ≤ Cσ8.

Case (ii): i = i′ but j ̸= j′. In this case, we have Cov(W2
kiW

2
kj,W

2
kiW

2
kj′) = Var(W2

ki)E[W2
kjW

2
kj′ ] ≤

Cσ4 · σ2 · σ2.
Case (iii): i ̸= i′ and j ̸= j′. The two terms are independent, and their covariance is zero.
Combining the above gives

Var(Ia) ≤
N

D2
N

N∑
k=1

 ∑
1≤i<j≤N k ̸=i,k ̸=j

b2kij · Cσ8 +
∑

i,j,j′∈{i,...,N}\k i,j,j′are distinct

bkijbkij′ · σ8

 .

(Here we use the inequality Var(
∑N

i=1 Yi) ≤ N
∑N

i=1Var(Yi))
We now bound the right hand side. Var(Wij) ≤ σ2. Hence, bkij ≤

∑
M>k σ

4 ≤ Nσ4. As
a result,

Var(Ia) ≤
N

D2
N

(
∑
k,i,j

256N2σ16 +
∑
k,i,j,j′

16N2σ16) ≤ CN7σ16

D2
N

.

Moreover, since DN ≥ τ 8N(N − 1)(N − 2)(N − 3). As a result, we have

Var(Ia) ≤
Cσ16N7

τ 16N8
= o(1).

Consider the variance of Ib. Rewrite

Ib =
1

DN

∑
k,j,l,i dist

cklijGklij.

where Gklij := WkiWkjWliWlj, cklij :=
∑

M>max{k,l,i,j}Var(WMi)Var(WMj).

Since Ib has a mean zero, Var(Ib) = E(I2b ). Additionally, for 2 cycles (k, ℓ, i, j) and
(k′, ℓ′, i′, j′), only when they are exactly equal, we have E[GkℓijGk′ℓ′i′j′ ] ̸= 0. As a result,

Var(Ib) =
1

D2
N

∑
k,ℓ,i,j are distinct

c2kℓijE[G2
kℓij] =

1

D2
N

∑
k,ℓ,i,j are distinct

c2kℓijVar(Wki)Var(Wkj)Var(Wli)Var(Wlj).

Similarly to how we get the bound for bijk, we can derive that ckℓij ≤ Nσ4. Hence,

Var(Ib) ≤
1

τ 16N8
N4 ·N2σ16 = o(1).

As a result, √
Var(Ib) = o(1).

Thus we have proved (a).
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We now check (b). By the Cauchy-Schwarz inequality and the Chebyshev’s inequality,

N∑
M=1

E
[
Y 2
N,M1{YN,M>ϵ} | FN,M−1

]
≤

N∑
M=1

√
E
[
Y 4
N,M | FN,M−1

]√
P (YN,M ≥ ϵ | FN,M−1)

≤ ϵ−2

N∑
M=1

E
[
Y 4
N,M | FN,M−1

]
.

Therefore, it suffices to show that the right-hand side converges to zero in probability.
Then, it suffices to show that its L1-norm converges to zero. Since the right-hand side is a
nonnegative random variable, we only need to prove that its expectation converges to zero,
i.e.,

E

[
N∑

M=1

Y 4
N,M

]
= o(1).

We have

E[Y 4
N,M ] =

1

D2
N

(
∑

1≤i<j≤M−1

E
[
W4

MiW
4
Mj

]
E[Γ4

M−1,ij] + 4
∑

(i,j)̸=(i′,j′)

E[Γ2
M−1,ijΓ

2
M−1,i′j′ ]E[W2

MiW
2
MjW

2
Mi′

W2
Mj′ ])

since E[WMiWMjWMi′WMj′WMi′′WMj′′WMi′′′WMj′′′ ] = 0 if any of i, j, i′, j′, i′′, j′′, i′′′, j′′′

appear only once. Note that if (i, j) ̸= (i′, j′), E[Wk1iWk1jWk2iWk2jWk3i′Wk3j′Wk4i′Wk4j′ ] =
0 unless k1 = k2, k3 = k4, then we have

E[Γ2
M−1,ijΓ

2
M−1,i′j′ ] ≤

∑
1≤k1,k2,k3,k4≤M−1 k1,k2 /∈{i,j},k3,k4 /∈{i′,j′}

E[Wk1iWk1jWk2iWk2jWk3i′Wk3j′Wk4i′Wk4j′ ]

=
∑

k1=k2,k3=k4

E[Gk1k2ijGk3k4i′j′ ]

≤ CN2σ8

Combining this with the fact that E[Γ4
M−1,ij] ≤ CN4σ8 (each term is smaller than Cσ8), we

deduce that

E[Y 4
N,M ] ≤ 1

τ 16N8
· CN6σ16 =

σ16

τ 16N2

As a result,
N∑

M=1

E
[
Y 4
N,M

]
≤ σ16

τ 16N
= o(1).

This gives (b) follows.

Remark 6. We largely follow the proof presented in Jin et al. (2018). However, it is
important to note that their proof for assertion (b) contains an error due to a miscalculation
of E[Y 4

N,M ]. To address this issue, we have modified their proof to ensure correctness.
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S.3 Proof of Lemma S.2

The proof is combined with the proof of Lemma C.3, see below.

S.4 Proof of Theorem 3

Recall that Z is the true community label matrix. Fix 1 ≤ m < K. Let {G}m be the class of
N ×m matrices Z(0), where each Z(0) is formed as follows: let {1, 2, ..., K} = S1 ∪ S2...∪ Sm
be a partition, column ℓ of Z(0) is the sum of all columns of Z in Sℓ, 1 ≤ ℓ ≤ m. Let L(0) be
the K ×m matrix of 0 and 1 where

L(0)(k, ℓ) = 1 if and only if k in Sℓ, 1 ≤ k ≤ K, 1 ≤ ℓ ≤ m.
Therefore, for each Z(0) ∈ Gm, we can find an L(0) such that Z(0) = ZL(0).

Now we can construct P̂(m,0) based on Z(0) and introduce P̂(m,0) = Z(0)
(
(Z(0))TZ(0)

)−1
(Z(0))TX,

Q
(m,0)
N =

∑
i1,i2,i3,i4(dist)

(S(X)i1,i2 − (S(P̂(m,0))i1,i2)(S(X)i2,i3 − (S(P̂(m,0))i2,i3)(S(X)i3,i4 − (S(P̂(m,0))i3,i4)(S(X)i4,i1 −
(S(P̂(m,0))i4,i1), and ϕ

(m,0)
N = Q

(m,0)
N /

√
CN . These are the proxies of P̂(m), Q

(m)
N and ϕ

(m)
N ,

respectively, where Ẑ(m) is now frozen at Z(0).
Now we define a non-stochastic counterpart of P̂(m,0) as follows. Let P(m,0) be constructed

similarly to P̂(m,0), except that X is replaced with P. Similarly, we can define the following
proxy of Q

(m,0)
N .

Q̃
(m,0)
N =

∑
i1,i2,i3,i4(dist)

(S(X)i1,i2 − (S(P(m,0))i1,i2)(S(X)i2,i3 − (S(P(m,0))i2,i3)(S(X)i3,i4 − (S(P(m,0))i3,i4)

(S(X)i4,i1 − (S(P(m,0))i4,i1)

Introduce P̃(m,0) = P−P(m,0), thus we can rewrite Q̃
(m,0)
N as

Q̃
(m,0)
N =

∑
i1,i2,i3,i4(dist)

(Wi1i2 + S(P̃(m,0))i1i2)(Wi2i3 + S(P̃ (m,0))i2i3)(Wi3i4 + S(P̃(m,0))i3i4)

(Wi4i1 + S(P̃(m,0))i4i1).

Let σ̃k be the k-th largest (in magnitude) singular value of P̃(m,0) and recall that σk is the
k-th largest (in magnitude) singular value of P. We have following lemmas.

Lemma S.3. For each 1 ≤ m ≤ K, tr(S(P̃(m,0))4) ≥ Cσ4N4.

Lemma S.4. For 1 ≤ m < K,

E[Q̃(m,0)
N ] = tr(S(P̃(m,0))4) + o(N4), Var(Q̃

(m,0)
N ) ≤ C(N6σ2 +N5σ4 +N4σ8).

Lemma S.5. For 1 ≤ m < K,

|E[Q(m,0)
N − Q̃

(m,0)
N ]| = O(σ4p2), Var(Q

(m,0)
N − Q̃

(m,0)
N ) = o(N8).
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For notation simplicity, we write P̃(m,0) = P̃.
We now prove Theorem 3. Note that by Theorem 2, the second item of Theorem 3 follows

once the first item is proved. Therefore we only consider the first item, where it is sufficient
to show that for all 1 < m < K,

ϕ
(m)
N → ∞, in probability.

By Theorem 1, there exists an event An with P(Ac
n) ≤ Cn−5 as n → ∞, such that on event

An we have Ẑ(m) ∈ Gm. This further indicates that on event An we have

ϕ
(m)
N ≥ min

Z(0)∈Gm

ϕ
(m,0)
N

Then further notice that the cardinality of Gm are mK , which is of constant order as long
as K is constant. Therefore to prove ϕ

(m)
N → ∞ in probability, it suffices to show that for

any fixed Z(0) ∈ Gm.
ϕ
(m,0)
N → ∞, in probability. (S.1)

By Lemma S.3-S.5,

E[
Q

(m,0)
N√
CN

] ≥ CN4−β
2 · [1 + o(1)] → ∞, Var(

Q
(m,0)
N√
CN

) ≤ CN7−β.

Therefore, by Chebyshev’s inequality, for any constant M > 0,

P(
Q

(m,0)
N√
CN

< M) ≤ (E[
Q

(m,0)
N√
CN

]−M)−2Var((
Q

(m,0)
N√
CN

)) ≤ C

[
N7−β

(N4−β
2 [1 + o(1)]−M)2

]
→ 0,

Hence we conclude the proof of Theorem 3.

Remark 7. Based on Assumptions 1 and 4, σ is a constant and each component of the
cluster centers is bounded by CP . Combining this with the Non-Splitting Property, it follows
that σ̂, obtained from Algorithm 2, is also bounded with high probability. Since the proofs of
Theorems 2 and 3 are based on the order of N , the boundedness of σ̂ ensures that replacing
σ with σ̂ does not affect the validity of our results. Consequently, the proofs for Algorithm 1
also apply to Algorithm 2.

S.5 Proof of Lemma S.3

By definition, it is easy to see

((Ẑ(m))T Ẑ(m))−1(Ẑ(m))TP =

 a11θ
∗
1 + · · ·+ a1Kθ

∗
K

. . .
am1θ

∗
1 + · · ·+ amKθ

∗
K

 ,

where a11, . . . , amK ∈ [0, 1] satisfy
∑K

j=1 aij = 1, i = 1, . . . ,m.

It follows that the 2-norm of each row in P̃ = P − P(m) is the Euclidean distance from
one of θ∗

1, . . . ,θ
∗
K to one of a11θ

∗
1 + · · ·+ a1Kθ

∗
K , . . . , am1θ

∗
1 + · · ·+ amKθ

∗
K .
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Recall that z1, ...,zn are true row cluster assignments, we introduce ẑ
(m)
1 , . . . , ẑ

(m)
n are

pseudo row cluster assignments and pseudo row clusters C
(m)
1 , . . . , C

(m)
m corresponding to

Ẑ(m). To this end, we can rewrite P̃ asθ∗
z1

−
∑K

j=1 aẑ(m)
1 j

θ∗
j

. . .

θ∗
zn −

∑K
j=1 aẑ(m)

n j
θ∗
j

 .

For any i = 1, . . . , K, using the pigeonhole principle and

|Ci| = |Ci ∩ C
(m)
1 |+ · · ·+ |Ci ∩ C(m)

m |,

we can deduce there exists ti ∈ {1, . . . ,m} such that

|Ci ∩ C
(m)
ti | ≥ |Ci|

m
≥ α0

K
n.

As a result, θ∗
1 −
∑K

j=1 at1jθ
∗
j , . . . ,θ

∗
K −

∑K
j=1 atKjθ

∗
j appear at least

α0

K
n times across all the

rows of P̃.
Since t1, . . . , tK ∈ {1, . . . ,m}, using pigeonhole principle again, we deduce that there

exist u ̸= v such that tu = tv. Therefore, θ
∗
u−
∑K

j=1 atujθ
∗
j and θ∗

v−
∑K

j=1 atujθ
∗
j both appear

at least α0

K
n times across all the rows of P̃.

By triangle inequality, we know

max {∥θ∗
u −

K∑
j=1

atujθ
∗
j∥2, ∥θ∗

v −
K∑
j=1

atujθ
∗
j∥2} ≥ 1

2
∥θ∗

u − θ∗
v∥ ≥ 1

2
∆.

Without loss of generality, assume ∥θ∗
u−
∑K

j=1 atujθ
∗
j∥2 is the larger one. Since it appears

at least α0

K
n times across all the rows of P̃, we can find a submatrix of P̃ consisting of α0

K
n

θ∗
u−
∑K

j=1 atujθ
∗
j ’s vertically stacked together. It is easy to see the 2-norm of this submatrix

is larger than 1
2

√
α0

K
n∆. We conclude that

∥P̃∥2 = ω(
√
n∆) = ω(nσ).

As a result, tr(S(P̃(m,0))4) ≥ Cσ4N4.

Remark 8. If we further assume κ(Θ) = O(1), this lemma follows directly from the facts

that rank(Ẑ(m)) = m and σK = ω(
√
N)

S.6 Proof of Lemma S.4

Given an N ×N symmetric matrix T, we define a random variable:

QW (T) =
∑

i1,i2,i3,i4(dist)

(Wi1i2 +Ti1i2)(Wi2i3 +Ti2i3)(Wi3i4 +Ti3i4)(Wi4i1 +Ti4i1).

Then, Q̃
(m,0)
N is a special case with T = S(P̃). We aim to study the general form of QW (T)

and prove the following lemma:
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Type # Examples Mean Variance
I 1 X1 =

∑
i1,i2,i3,i4(dist)

Wi1i2Wi2i3Wi3i4Wi4i1 0 O(N4σ8)

II 4 X2 =
∑

i1,i2,i3,i4(dist)
Ti1i2Wi2i3Wi3i4Wi4i1 0 O(N4σ6)

IIIa 4 X3 =
∑

i1,i2,i3,i4(dist)
Ti1i2Ti2i3Wi3i4Wi4i1 0 O(N5σ4)

IIIb 2 X4 =
∑

i1,i2,i3,i4(dist)
Ti1i2Wi2i3Ti3i4Wi4i1 0 O(N5σ4)

IV 4 X5 =
∑

i1,i2,i3,i4(dist)
Ti1i2Ti2i3Ti3i4Wi4i1 0 O(N6σ2)

V 1 X6 =
∑

i1,i2,i3,i4(dist)
Ti1i2Ti2i3Ti3i4Ti4i1 tr(T 4)+o(N4) 0

Table S.1: The post-expansion sums of QW (T ) have 6 different types. We present the mean
and variance of each type.

Lemma S.6. As N → ∞, suppose there is a constant C > 0 such that |Tij| ≤ C for all
1 ≤ i, j ≤ N . Then, E[QW (T)] = tr(T4) + o(N4) and Var(QW (T)) ≤ CN6.

We now set T = S(P̃(m,0)) and verify the conditions of Lemma S.6. By Assumption 7,

S(P̃(m)) ≤ 2CP and hence we can apply this lemma. The claim follows immediately.
It remains to show Lemma S.6. We write QW (T) as the sum of 24 = 16 post-expansion

sums. Each post-expansion sum takes a form

X =
∑

i1,i2,i3,i4(dist)

ai1i2bi2i3ci3i4di4i1 ,

where each of aij, bij, cij, dij may take value in {Wij,Tij}. Then, E[X] is equal to the sum
of means of these post-expansion sums, and Var(X) is bounded by a constant times the sum
of variances of these post-expansion sums. It suffices to study the means and variances of
these post-expansion sums.

We divide 16 post-expansion sums into 6 common types and compute the mean and
variance of each type.

The calculation of mean is easy since Wij and Wi′j′ are independent if (i, j) and (i′, j′)
are distinct. Besides, we have E[X6] = tr(T4) − ∆ and |Ti1i2Ti2i3Ti3i4Ti4i1| ≤ C, then it
follows that E[X6] = tr(T4) + C

∑
(i1,i2,i3,i4)non−dist 1 = tr(T4) +O(N3).

Now we turn to the calculation of variance.
We already see Var(X1) ≤ CN4σ8 in the proof of Theorem 4.
Now we introduce three terms below.

χ
(1)
i1,i2,i3,i4

= Wi1i2Ti2i3Ti3i4Ti4i1 +Ti1i2Wi2i3Ti3i4Ti4i1

+Ti1i2Ti2i3Wi3i4Ti4i1 +Ti1i2Ti2i3Ti3i4Wi4i1 ,

χ
(2)
i1,i2,i3,i4

= Wi1i2Wi2i3Ti3i4Ti4i1 +Wi1i2Ti2i3Wi3i4Ti4i1 +Wi1i2Ti2i3Ti3i4Wi4i1

+Ti1i2Wi2i3Wi3i4Ti4i1 +Ti1i2Wi2i3Wi3i4Ti4i1 +Ti1i2Ti2i3Wi3i4Wi4i1 ,

χ
(3)
i1,i2,i3,i4

= Ti1i2Wi2i3Wi3i4Wi4i1+Wi1i2Ti2i3Wi3i4Wi4i1+Wi1i2Wi2i3Ti3i4Wi4i1+Wi1i2Wi2i3Wi3i4Ti4i1 .

Note that the four terms in χ
(1)
i1,i2,i3,i4

are independent of each other. Hence, Var(χ
(1)
i1,i2,i3,i4

) ≤
Cσ2 and

∑
(i1,i2,i3,i4)dist

Var(χ
(1)
i1,i2,i3,i4

) ≤ CN4σ2.
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We then look at the covariance between χ
(1)
i1,i2,i3,i4

and χ
(1)

i′1,i
′
2,i

′
3,i

′
4
. Let (j, s,m, l) be any

cycle on the four nodes {i1, i2, i3, i4}, and let (j′, s′,m′, l′) be any cycle on the four nodes
{i′1, i′2, i′3, i′4}. As long as {j, s} ≠ {j′, s′}, the two termsWjsTsmTmlTlj andWj′s′Ts′m′Tm′l′Tl′j′

are independent, hence, their covariance is zero. Otherwise, the covariance is bounded by
Cσ2. It follows that∑

(i1,i2,i3,i4)dist

∑
(i′1,i

′
2,i

′
3,i

′
4)dist

Cov(χ
(1)
i1,i2,i3,i4

, χ
(1)

i′1,i
′
2,i

′
3,i

′
4
) ≤ C

∑
i1,i2,i3,i4,i′3,i

′
4

σ2 ≤ CN6

Hence, the above imply Var(
∑

(i1,i2,i3,i4)dist
χ
(1)
i1,i2,i3,i4

) ≤ CN6.

We can consider other terms similarly. We have E[(χ(2)
i1,i2,i3,i4

)] = 0, E[(χ(3)
i1,i2,i3,i4

)] = 0,

Var(χ
(2)
i1,i2,i3,i4

) ≤ E[(χ(2)
i1,i2,i3,i4

)2] ≤ 36σ4, Var(χ
(3)
i1,i2,i3,i4

) ≤ E[(χ(3)
i1,i2,i3,i4

)2] ≤ 16σ6,∑
(i1,i2,i3,i4)dist

Var(χ
(2)
i1,i2,i3,i4

) ≤ CN4σ4 and
∑

(i1,i2,i3,i4)dist
Var(χ

(3)
i1,i2,i3,i4

) ≤ CN4σ6. Addi-

tionally, to ensure Cov(χ
(2)
i1,i2,i3,i4

, χ
(2)

i′1,i
′
2,i

′
3,i

′
4
) (resp. Cov(χ

(3)
i1,i2,i3,i4

, χ
(3)

i′1,i
′
2,i

′
3,i

′
4
)) is nonzero, we

need #{(i1, i2, i3, i4)∩ (i′1, i
′
2, i

′
3, i

′
4)} ≥ 3 (resp.#{(i1, i2, i3, i4)∩ (i′1, i

′
2, i

′
3, i

′
4)} = 4) and hence∑

(i1,i2,i3,i4)dist

∑
(i′1,i

′
2,i

′
3,i

′
4)dist

Cov(χ
(2)
i1,i2,i3,i4

, χ
(2)

i′1,i
′
2,i

′
3,i

′
4
) ≤ CN5,

∑
(i1,i2,i3,i4)dist

∑
(i′1,i

′
2,i

′
3,i

′
4)dist

Cov(χ
(3)
i1,i2,i3,i4

, χ
(3)

i′1,i
′
2,i

′
3,i

′
4
) ≤ CN4,

which imply Var(
∑

(i1,i2,i3,i4)dist
χ
(2)
i1,i2,i3,i4

) ≤ CN5 and Var(
∑

(i1,i2,i3,i4)dist
χ
(3)
i1,i2,i3,i4

) ≤ CN4.

Therefore, for χ =
∑

(i1,i2,i3,i4)dist
(χ

(1)
i1,i2,i3,i4

+ χ
(2)
i1,i2,i3,i4

+ χ
(3)
i1,i2,i3,i4

), we have

Var(χ) ≤ 3(Var(
∑

(i1,i2,i3,i4)dist

χ
(1)
i1,i2,i3,i4

) + Var(
∑

(i1,i2,i3,i4)dist

χ
(2)
i1,i2,i3,i4

) + Var(
∑

(i1,i2,i3,i4)dist

χ
(3)
i1,i2,i3,i4

))

≤ CN6

Consequently,
Var(QW (T)) ≤ 2(Var(X1) + Var(χ)) ≤ CN6.

S.7 Proof of Lemma S.5

Recall that our objective is to analyze the quantities |E[Q(m,0)
N − Q̃

(m,0)
N ]| and Var(Q

(m,0)
N −

Q̃
(m,0)
N ). To this end, we first examine the expression Q

(m,0)
N − Q̃

(m,0)
N .

We introduce the notation Mijkℓ(X) = XijXjkXkℓXℓi for any symmetric matrix X and
distinct indices (i, j, k, ℓ). Thus, we have

Q
(m,0)
N − Q̃

(m,0)
N =

∑
i1,i2,i3,i4 (dist)

[
Mi1i2i3i4(X)−Mi1i2i3i4(X̃)

]
,

where {
Xij = S(P̃(m,0))ij +Wij +Dij,

X̃ij = S(P̃(m,0))ij +Wij.
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The matrix Dij is defined as

Dij =



0, if (i ≤ n, j ≤ n) and (i > n, j > n),∑
k∈C(m)

ẑi

Wkj

|C(m)
ẑi

|
, if (i ≤ n, j > n),∑

l∈C(m)
ẑj

Wil

|C(m)
ẑj

|
, if (i > n, j ≤ n).

For simplicity, we shall omit the superscripts (m, 0) in (P̃, ϵ). From the expressions for

Xij and X̃ij, we observe that Mi1i2i3i4(X) − Mi1i2i3i4(X̃) expands into 34 − 24 = 65 terms.

Therefore, Q
(m,0)
N − Q̃

(m,0)
N consists of 65 post-expansion sums, each of the form∑

(i1,i2,i3,i4) (dist)

ai1i2bi2i3ci3i4di4i1 , where a, b, c, d ∈ {S(P̃),W,D}.

To analyze |E[Q(m,0)
N − Q̃

(m,0)
N ]| and Var(Q

(m,0)
N − Q̃

(m,0)
N ), we apply the triangle inequality

and Cauchy inequality, reducing the problem to evaluating the absolute mean and variance
of each of these 65 post-expansion sums. In Table S.2, we categorize them into 15 distinct
types, displaying their respective counts, absolute means and variances.

Table S.2: The 10 types of post-expansion sums for (Q
(m,0)
N − Q̃

(m,0)
N ).

Type Count Name Formula Abs. Mean
Ia 4 Y1

∑
i1,i2,i3,i4
(dist)

Di1i2Wi2i3Wi3i4Wi4i1 0

Ib 8 Y2

∑
i1,i2,i3,i4
(dist)

Di1i2S(P̃ )i2i3Wi3i4Wi4i1 0

4 Y3

∑
i1,i2,i3,i4
(dist)

Di1i2Wi2i3S(P̃ )i3i4Wi4i1 0

Ic 8 Y4

∑
i1,i2,i3,i4
(dist)

Di1i2S(P̃)i2i3S(P̃ )i3i4Wi4i1 O(np2)

4 Y5

∑
i1,i2,i3,i4
(dist)

Di1i2S(P̃)i2i3Wi3i4S(P̃)i4i1 0

Id 4 Y6

∑
i1,i2,i3,i4
(dist)

Di1i2S(P̃)i2i3S(P̃)i3i4S(P̃)i4i1 0

IIa 4 Z1

∑
i1,i2,i3,i4
(dist)

Di1i2Di2i3Wi3i4Wi4i1 O(p2)

2 Z2

∑
i1,i2,i3,i4
(dist)

Di1i2Wi2i3Di3i4Wi4i1 O(p2)

IIb 8 Z3

∑
i1,i2,i3,i4
(dist)

Di1i2Di2i3S(P̃)i3i4Wi4i1 0

4 Z4

∑
i1,i2,i3,i4
(dist)

Di1i2S(P̃)i2i3Di3i4Wi4i1 0

IIc 4 Z5

∑
i1,i2,i3,i4
(dist)

Di1i2Di2i3S(P̃)i3i4S(P̃)i4i1 O(np2)

2 Z6

∑
i1,i2,i3,i4
(dist)

Di1i2S(P̃)i2i3Di3i4S(P̃)i4i1 0

IIIa 4 T1

∑
i1,i2,i3,i4
(dist)

Di1i2Di2i3Di3i4Wi4i1 O(p2)

IIIb 4 T2

∑
i1,i2,i3,i4
(dist)

Di1i2Di2i3Di3i4S(P̃)i4i1 0

IV 1 F
∑

i1,i2,i3,i4
(dist)

Di1i2Di2i3Di3i4Di4i1 O(p2)
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We shall proceed to verify each result in Table S.2 individually. Additionally, we will
establish an upper bound for the second moment of each type, which will allow us to control
the variance.

Actually, our primary objective is to prove that Var(Q
(m,0)
N − Q̃

(m,0)
N ) = o(N8). Accord-

ingly, it suffices to demonstrate that E[Y 2
i ],E[Z2

j ],E[T 2
k ],E[F 2] = o(N8) for i, j = 1, . . . , 6

and k = 1, 2. Observe that any sums arising from expansions in E[(Q(m,0)
N − Q̃

(m,0)
N )2] are

bounded by (2CP )
8 multiplied by a convex combination of terms of the form |E[

∏
1≤k≤n
1≤l≤p

Etkl
kl ]|

with
∑

1≤k≤n
1≤l≤p

tkl ≤ 8. This indicates that such sums are uniformly bounded by a constant,

which we denote by Cb.
Consequently, in our examination of E[Y 2

i ],E[Z2
j ],E[T 2

k ],E[F 2], we can confine our anal-
ysis to the expanded summations in which the indices are distinct. This point will be
elaborated further in the proof for Type Ia.

We begin by simplifying the structural assumptions in the matrices. Due to symmetry,
the entries Dij,Wij,S(P̃)ij are non-zero only when either i ≤ n and j > n, or vice versa.
Therefore, for analyzing terms of the form E[ai1i2bi2i3ci3i4di4i1 ], we need only consider two
cases: (1) i1, i3 ≤ N and i2, i4 > N ; and (2) i2, i4 ≤ N and i1, i3 > N . Similarly, when
evaluating terms such as E[ai1i2bi2i3ci3i4di4i1ai′1i′2bi′2i′3ci′3i′4di′4i′1 ], we distinguish four cases based
on index configurations: (1) i1, i3, i

′
1, i

′
3 ≤ N and i2, i4, i

′
2, i

′
4 > N ; (2) i1, i3, i

′
2, i

′
4 ≤ N and

i2, i4, i
′
1, i

′
3 > N ; (3) i2, i4, i

′
1, i

′
3 ≤ N and i1, i3, i

′
2, i

′
4 > N ; and (4) i2, i4, i

′
2, i

′
4 ≤ N and

i1, i3, i
′
1, i

′
3 > N . Furthermore, it is essential to note that the variables Eij are mutually

independent, a property that leads to the vanishing of many terms in our expansions. This
independence is critical in subsequent analysis.

S.7.1 Type Ia

|E[Y1]| ≤ |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

Di1i2Wi2i3Wi3i4Wi4i1 ]|+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

Di1i2Wi2i3Wi3i4Wi4i1 ]|

= |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|
Wi2i3Wi3i4Wi4i1 ]|+ |E[

∑
(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|

Wi2i3Wi3i4Wi4i1 ]|
= 0

The last equality holds because, for the case i1, i3 ≤ N, i2, i4 > N , the terms

∑
k∈C

(m)
ẑi1

Wki2

|C(m)
ẑi1

|
Wi2i3 ,

Wi3i4 , Wi4i1 are independent. Similarly, for the case i2, i4 ≤ N, i3, i1 > N , the terms∑
l∈C

(m)
ẑi2

Wi1l

|C(m)
ẑi2

|
Wi4i1 , Wi2i3 , Wi3i4 are independent.

Now we turn to E[Y 2
1 ]. To proceed, we partition the post-expansion summations in E[Y 2

1 ]
according to the indices involved.
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E[Y 2
1 ] = E[

∑
(i1,i2,i3,i4)dist
(i′1,i

′
2,i

′
3,i

′
4)dist

Di1i2Wi2i3Wi3i4Wi4i1Di′1i
′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]

≤ |E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Wi2i3Wi3i4Wi4i1Di′1i
′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]|

+ |
∑

(i1,i2,i3,i4)dist
(i′1,i

′
2,i

′
3,i

′
4)dist

#{(i1,i2,i3,i4)∩(i′1,i′2,i′3,i′4)}≥1

E[Di1i2Wi2i3Wi3i4Wi4i1Di′1i
′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]|

The second term can be controlled by CN7 · Cb = o(N8), allowing us to focus solely on the
first term.

|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Wi2i3Wi3i4Wi4i1Di′1i
′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]|

≤|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i1,i3,i′1,i
′
3≤N,i2,i4,i′2,i′4>N

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|
Wi2i3Wi3i4Wi4i1

∑
k∈C(m)

ẑ
i′1

Wki′2

|C(m)
ẑi′1

|
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]|

+|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i1,i3,i′2,i
′
4≤N,i2,i4,i′1,i′3>N

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|
Wi2i3Wi3i4Wi4i1

∑
l∈C(m)

ẑ
i′2

Wi′1l

|C(m)
ẑi′2

|
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]|

+|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′1,i
′
3≤N,i1,i3,i′2,i′4>N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|
Wi2i3Wi3i4Wi4i1

∑
k∈C(m)

ẑ
i′1

Wki′2

|C(m)
ẑi′1

|
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]|

+|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′2,i
′
4≤N,i1,i3,i′1,i′3>N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|
Wi2i3Wi3i4Wi4i1

∑
l∈C(m)

ẑ
i′2

Wi′1l

|C(m)
ẑi′2

|
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]|

=0

The last equality holds because, for the cases i1, i3, i
′
1, i

′
3 ≤ N, i2, i4, i

′
2, i

′
4 > N and i1, i3, i

′
2, i

′
4 ≤

N, i2, i4, i
′
1, i

′
3 > N , the termsDi1i2Wi2i3Di′1i

′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
,Wi3i4 ,Wi4i1 are independent.

Similarly, for the case i2, i4, i
′
1, i

′
3 ≤ N, i1, i3, i

′
2, i

′
4 > N and i2, i4, i

′
2, i

′
4 ≤ N, i1, i3, i

′
1, i

′
3 > N ,

the terms Di1i2Wi4i1Di′1i
′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
, Wi2i3 , Wi3i4 are independent.

Thus we have proved E[Y 2
1 ] = o(N8).

S.7.2 Type Ib

Similar to the analysis for Type Ia above, we obtain

|E[Y2]| = |E[Y3]| = 0,
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E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2S(P̃)i2i3Wi3i4Wi4i1Di′1i
′
2
S(P̃)i′2i′3Wi′3i

′
4
Wi′4i

′
1
] = 0,

E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Wi2i3S(P̃)i3i4Wi4i1Di′1i
′
2
Wi′2i

′
3
S(P̃)i′3i′4Wi′4i

′
1
] = 0.

S.7.3 Type Ic

Using the property that Eij are mutually independent again and |S(P̃)ij| ≤ 2CP , we readily
obtain

|E[Y4]| ≤ |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

Di1i2S(P̃)i2i3S(P̃)i3i4Wi4i1 ]|+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

Di1i2S(P̃)i2i3S(P̃)i3i4Wi4i1 ]|

= |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|
S(P̃)i2i3S(P̃)i3i4Wi4i1 ]|

+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|
S(P̃)i2i3S(P̃)i3i4Wi4i1 ]|

= |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|
S(P̃)i2i3S(P̃)i3i4Wi4i1 ]|

= |
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

i4∈C(m)
ẑi2

E[
W2

i1i2

|C(m)
ẑi2

|
S(P̃)i2i3S(P̃)i3i4 ]|

≤
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

i4∈C(m)
ẑi2

E[|
W2

i1i2

|C(m)
ẑi2

|
S(P̃)i2i3S(P̃)i3i4|]

Now we can select (i2, i4) as follows: we first select a pseudo cluster based on Ẑ(m,0) and
select a pair (i2, i4) from this cluster. By combining this with the moment inequality for
sub-exponential distributions,

|E[Y4]| ≤ 4C2
Pp

2
∑

(i2,i4)dist
i2,i4≤N
i4∈C(m)

ẑi2

E[
W2

i1i2

|C(m)
ẑi2

|
] ≤ 4C2

Pp
2

m∑
i=1

(
|C(m)

i |
2

)
Cσ2

|C(m)
i |

= O(np2)
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Now we turn to finding an upper bound for |E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2S(P̃)i2i3S(P̃)i3i4Wi4i1Di′1i
′
2

S(P̃)i′2i′3S(P̃)i′3i′4Wi′4i
′
1
]|. Similar to the analysis for Type Ic above, we obtain

|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2S(P̃)i2i3S(P̃)i3i4Wi4i1Di′1i
′
2
S(P̃)i′2i′3S(P̃)i′3i′4Wi′4i

′
1
]|

≤|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i1,i3,i′1,i
′
3≤N,i2,i4,i′2,i′4>N

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|
S(P̃)i2i3S(P̃)i3i4Wi4i1

∑
k∈C(m)

ẑ
i′1

Wki′2

|C(m)
ẑi′1

|
S(P̃)i′2i′3S(P̃)i′3i′4Wi′4i

′
1
]|

+|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i1,i3,i′2,i
′
4≤N,i2,i4,i′1,i′3>N

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|
S(P̃)i2i3S(P̃ )i3i4Wi4i1

∑
l∈C(m)

ẑ
i′2

Wi′1l

|C(m)
ẑi′2

|
S(P̃)i′2i′3S(P̃)i′3i′4Wi′4i

′
1
]|

+|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′1,i
′
3≤N,i1,i3,i′2,i′4>N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|
S(P̃)i2i3S(P̃)i3i4Wi4i1

∑
k∈C(m)

ẑ
i′1

Wki′2

|C(m)
ẑi′1

|
S(P̃)i′2i′3S(P̃)i′3i′4Wi′4i

′
1
]|

+|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′2,i
′
4≤N,i1,i3,i′1,i′3>N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|
S(P̃)i2i3S(P̃)i3i4Wi4i1

∑
l∈C(m)

ẑ
i′2

Wi′1l

|C(m)
ẑi′2

|
S(P̃)i′2i′3S(P̃)i′3i′4Wi′4i

′
1
]|

=|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′2,i
′
4≤N,i1,i3,i′1,i′3>N

i4∈C(m)
ẑi2

,i′4∈C
(m)
ẑ
i′2

E[
W2

i1i4

|C(m)
ẑi2

|
S(P̃)i2i3S(P̃)i3i4 ]E[

W2
i′1i

′
4

|C(m)
ẑi′2

|
S(P̃)i′2i′3S(P̃)i′3i′4 ]|

≤
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′2,i
′
4≤N,i1,i3,i′1,i′3>N

i4∈C(m)
ẑi2

,i′4∈C
(m)
ẑ
i′2

E[|
W2

i1i4

|C(m)
ẑi2

|
S(P̃)i2i3S(P̃)i3i4|]E[|

W2
i′1i

′
4

|C(m)
ẑi′2

|
S(P̃)i′2i′3S(P̃)i′3i′4 |]

≤16C4
P

∑
(i1,i2,i3,i4,i′1,i

′
2,i

′
3,i

′
4)dist

i2,i4,i′2,i
′
4≤N,i1,i3,i′1,i′3>N

i4∈C(m)
ẑi2

,i′4∈C
(m)
ẑ
i′2

E[
W2

i1i4

|C(m)
ẑi2

|
]E[

W2
i′1i

′
4

|C(m)
ẑi′2

|
]

Now we can add some terms to make this summation more organized,

|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2S(P̃)i2i3S(P̃)i3i4Wi4i1Di′1i
′
2
S(P̃)i′2i′3S(P̃)i′3i′4Wi′4i

′
1
]|

≤16C4
P

∑
(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

i4∈C(m)
ẑi2

E[
W2

i1i4

|C(m)
ẑi2

|
]

∑
(i′1,i

′
2,i

′
3,i

′
4)dist

i′1,i
′
3>N,i

′
2,i

′
4≤N

i′4∈C
(m)
ẑ
i′2

E[
W2

i′1i
′
4

|C(m)
ẑi′2

|
]
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≤16C4
Pp

4

m∑
i=1

(
|C(m)

i |
2

)
Cσ2

|C(m)
i |

m∑
i=1

(
|C(m)

i |
2

)
Cσ2

|C(m)
i |

=O(n2p4)

On the other hand, it is easy to obtain |E[Y5]| = 0 and E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2S(P̃)i2i3Wi3i4

S(P̃)i4i1Di′1i
′
2
S(P̃)i′2i′3Wi′3i

′
4
S(P̃)i′4i′1 ] = 0, following a similar analysis as for Type Ia.

S.7.4 Type Id

Similar to the analysis for Type Ia above, we obtain |E[Y6]| = 0 and E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2

S(P̃)i2i3S(P̃)i3i4S(P̃)i4i1Di′1i
′
2
S(P̃)i′2i′3S(P̃)i′3i′4S(P̃)i′4i′1 ] = 0.

S.7.5 Type IIa

Using the previously demonstrated proof approach, we can obtain

|E[Z1]| ≤ |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

Di1i2Di2i3Wi3i4Wi4i1 ]|+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

Di1i2Di2i3Wi3i4Wi4i1 ]|

= |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|

∑
l∈C(m)

ẑi3

Wi2l

|C(m)
ẑi3

|
Wi3i4Wi4i1 ]|

+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|

∑
k∈C(m)

ẑi2

Wki3

|C(m)
ẑi2

|
Wi3i4Wi4i1 ]|

= |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|

∑
k∈C(m)

ẑi2

Wki3

|C(m)
ẑi2

|
Wi3i4Wi4i1 ]|

Again, we can limit our focus on the case where i2 and i4 belong to the same pseudo cluster.
Hence we obtain

|E[Z1]| ≤ p2
m∑
i=1

(
|C(m)

i |
2

)
Cσ4

|C(m)
i |2

= O(σ4p2)

Now we turn to finding an upper bound for |E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Di2i3Wi3i4Wi4i1Di′1i
′
2

Di′2i
′
3
Wi′3i

′
4
Wi′4i

′
1
]|.

|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Di2i3Wi3i4Wi4i1Di′1i
′
2
Di′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]|
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=|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′2,i
′
4≤N,i1,i3,i′1,i′3>N

i4∈C(m)
ẑi2

,i′4∈C
(m)
ẑ
i′2

E[
W2

i1i4
W2

i3i4

|C(m)
ẑi2

|2
]E[

W2
i′1i

′
4
W2

i′3i
′
4

|C(m)
ẑi′2

|2
]|

≤
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

i4∈C(m)
ẑi2

E[
W2

i1i4
W2

i3i4

|C(m)
ẑi2

|2
]

∑
(i′1,i

′
2,i

′
3,i

′
4)dist

i′1,i
′
3>N,i

′
2,i

′
4≤N

i′4∈C
(m)
ẑ
i′2

E[
W2

i′1i
′
4
W2

i′3i
′
4

|C(m)
ẑi′2

|2
]

≤p4
m∑
i=1

(
|C(m)

i |
2

)
Cσ4

|C(m)
i |2

m∑
i=1

(
|C(m)

i |
2

)
Cσ4

|C(m)
i |2

=O(p4)

Similarly, we have

|E[Z2]| ≤ |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

Di1i2Wi2i3Di3i4Wi4i1 ]|+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

Di1i2Wi2i3Di3i4Wi4i1 ]|

= |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|
Wi2i3

∑
k∈C(m)

ẑi3

Wki4

|C(m)
ẑi3

|
Wi4i1 ]|

+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|
Wi2i3

∑
l∈C(m)

ẑi4

Wi3l

|C(m)
ẑi4

|
Wi4i1 ]|

≤ 2p2
m∑
i=1

(
|C(m)

i |
2

)
Cσ4

|C(m)
i |2

= O(p2)

Now we turn to finding an upper bound for |E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Wi2i3Di3i4Wi4i1Di′1i
′
2

Wi′2i
′
3
Di′3i

′
4
Wi′4i

′
1
]|, following a similar analysis as for Type Ia.

|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Wi2i3Di3i4Wi4i1Di′1i
′
2
Wi′2i

′
3
Di′3i

′
4
Wi′4i

′
1
]|

=|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i1,i3,i′1,i
′
3≤N,i2,i4,i′2,i′4>N

i3∈C(m)
ẑi1

,i′3∈C
(m)
ẑ
i′1

E[
W2

i1i4
W2

i3i2

|C(m)
ẑi1

|2
]E[

W2
i′1i

′
4
W2

i′3i
′
2

|C(m)
ẑi′1

|2
]|

+|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i1,i3,i′2,i
′
4≤N,i2,i4,i′1,i′3>N

i3∈C(m)
ẑi1

,i′4∈C
(m)
ẑ
i′2

E[
W2

i1i4
W2

i3i2

|C(m)
ẑi1

|2
]E[

W2
i′1i

′
4
W2

i′3i
′
2

|C(m)
ẑi′2

|2
]|
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+|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′1,i
′
3≤N,i1,i3,i′2,i′4>N

i4∈C(m)
ẑi2

,i′3∈C
(m)
ẑ
i′1

E[
W2

i1i4
W2

i3i2

|C(m)
ẑi2

|2
]E[

W 2
i′1i

′
4
W2

i′3i
′
2

|C(m)
ẑi′1

|2
]|

+|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′2,i
′
4≤N,i1,i3,i′1,i′3>N

i4∈C(m)
ẑi2

,i′4∈C
(m)
ẑ
i′2

E[
W2

i1i4
W2

i3i2

|C(m)
ẑi2

|2
]E[

W2
i′1i

′
4
W2

i′3i
′
2

|C(m)
ẑi′2

|2
]|

≤4p4
m∑
i=1

(
|C(m)

i |
2

)
Cσ4

|C(m)
i |2

m∑
i=1

(
|C(m)

i |
2

)
Cσ4

|C(m)
i |2

=O(p4)

S.7.6 Type IIb

Similar to the analysis for Type Ia above, we obtain

|E[Z3]| = |E[Z4]| = 0,

E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Di2i3S(P̃)i3i4Wi4i1Di′1i
′
2
Di′2i

′
3
S(P̃)i′3i′4Wi′4i

′
1
] = 0,

E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2S(P̃)i2i3Di3i4Wi4i1Di′1i
′
2
S(P̃)i′2i′3Di′3i

′
4
Wi′4i

′
1
] = 0.

S.7.7 Type IIc

Using the previously demonstrated proof approach, we can obtain

|E[Z5]| ≤ |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

Di1i2Di2i3S(P̃)i3i4S(P̃)i4i1 ]|+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

Di1i2Di2i3S(P̃)i3i4S(P̃)i4i1 ]|

= |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|

∑
l∈C(m)

ẑi3

Wi2l

|C(m)
ẑi3

|
S(P̃)i3i4S(P̃)i4i1 ]|

+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|

∑
k∈C(m)

ẑi2

Wki3

|C(m)
ẑi2

|
S(P̃)i3i4S(P̃)i4i1 ]|

We can still limit our focus on the case where i1 and i3 belong to the same pseudo cluster.
However, unlike before, this time there are more non-zero terms in the numerator.

|E[Z5]| ≤ 4C2
Pp

2E[
∑

(i1,i3)dist
i1,i3≤N
i3∈C(m)

ẑi1

|C(m)
ẑi1

|W2
i1i2

|C(m)
ẑi1

|2
]| ≤ 4C2

Pp
2

m∑
i=1

(
|C(m)

i |
2

)
Cσ2

|C(m)
i |

= O(np2)
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Now we turn to finding an upper bound for |E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Di2i3S(P̃)i3i4S(P̃)i4i1Di′1i
′
2

Di′2i
′
3
S(P̃)i′3i′4S(P̃)i′4i′1 ]|.

|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Di2i3S(P̃)i3i4S(P̃)i4i1Di′1i
′
2
Di′2i

′
3
S(P̃)i′3i′4S(P̃)i′4i′1 ]|

=|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i1,i3,i′1,i
′
3≤N,i2,i4,i′2,i′4>N

i3∈C(m)
ẑi1

,i′3∈C
(m)
ẑ
i′1

E[
(
∑

k∈C(m)
ẑi1

Wki2)
2

|C(m)
ẑi1

|2
S(P̃)i3i4S(P̃)i4i1 ]E[

(
∑

k∈C(m)
ẑ
i′1

Wki′2
)2

|C(m)
ẑi′1

|2
S(P̃)i′3i′4S(P̃)i′4i′1 ]|

≤16C4
P

∑
(i1,i2,i3,i4,i′1,i

′
2,i

′
3,i

′
4)dist

i1,i3,i′1,i
′
3≤N,i2,i4,i′2,i′4>N

i3∈C(m)
ẑi1

,i′3∈C
(m)
ẑ
i′1

E[

∑
k∈C(m)

ẑi1

W2
ki2

|C(m)
ẑi1

|2
]E[

∑
k∈C(m)

ẑ
i′1

Wki′2

|C(m)
ẑi′1

|2
]

=16C4
Pp

4

m∑
i=1

(
|C(m)

i |
2

)
Cσ2

|C(m)
i |

m∑
i=1

(
|C(m)

i |
2

)
Cσ2

|C(m)
i |

=O(n2p4)

On the other hand, it is easy to obtain |E[Z6]| = 0 and E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2S(P̃)i2i3

Di3i4S(P̃)i4i1Di′1i
′
2
S(P̃)i′2i′3Di′3i

′
4
S(P̃)i′4i′1 ] = 0, following a similar analysis as for Type Ia.

S.7.8 Type IIIa

Using the previously demonstrated proof approach, we can obtain

|E[T1]| ≤ |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

Di1i2Di2i3Di3i4Wi4i1 ]|+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

Di1i2Di2i3Di3i4Wi4i1 ]|

= |E[
∑

(i1,i2,i3,i4)dist
i1,i3≤N,i2,i4>N

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|

∑
l∈C(m)

ẑi3

Wi2l

|C(m)
ẑi3

|

∑
k∈C(m)

ẑi3

Wki4

|C(m)
ẑi3

|
Wi4i1 ]|

+ |E[
∑

(i1,i2,i3,i4)dist
i1,i3>N,i2,i4≤N

∑
l∈C(m)

ẑi2

Wi1l

|C(m)
ẑi2

|

∑
k∈C(m)

ẑi2

Wki3

|C(m)
ẑi2

|

∑
l∈C(m)

ẑi4

Wi3l

|C(m)
ẑi4

|
Wi4i1 ]|

≤ 2p2
m∑
i=1

(
|C(m)

i |
2

)
Cσ4

|C(m)
i |2

= O(p2)

Here, we still rely on the key observation that two indices not exceeding n must belong to
the same pseudo-cluster to ensure that the corresponding post-expansion is non-zero.
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Now we turn to finding an upper bound for |E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Di2i3Di3i4Wi4i1Di′1i
′
2

Di′2i
′
3
Di′3i

′
4
Wi′4i

′
1
]|.

|E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Di2i3Di3i4Wi4i1Di′1i
′
2
Di′2i

′
3
Di′3i

′
4
Wi′4i

′
1
]|

=|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i1,i3,i′1,i
′
3≤N,i2,i4,i′2,i′4>N

i3∈C(m)
ẑi1

,i′3∈C
(m)
ẑ
i′1

E[
W2

i1i4

∑
k∈C(m)

ẑi1

W2
ki2

|C(m)
ẑi1

|3
]E[

W2
i′1i

′
4

∑
k∈C(m)

ẑ
i′1

W2
ki′2

|C(m)
ẑi′1

|3
]|

+|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i1,i3,i′2,i
′
4≤N,i2,i4,i′1,i′3>N

i3∈C(m)
ẑi1

,i′4∈C
(m)
ẑ
i′2

E[
W2

i1i4

∑
k∈C(m)

ẑi1

W2
ki2

|C(m)
ẑi1

|3
]E[

W2
i′1i

′
4

∑
k∈C(m)

ẑ
i′2

W2
ki′3

|C(m)
ẑi′2

|3
]|

+|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′1,i
′
3≤N,i1,i3,i′2,i′4>N

i4∈C(m)
ẑi2

,i′3∈C
(m)
ẑ
i′1

E[
W2

i1i4

∑
k∈C(m)

ẑi2

W2
ki3

|C(m)
ẑi2

|3
]E[

W2
i′1i

′
4

∑
k∈C(m)

ẑ
i′1

W2
ki′2

|C(m)
ẑi′1

|3
]|

+|
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

i2,i4,i′2,i
′
4≤N,i1,i3,i′1,i′3>N

i4∈C(m)
ẑi2

,i′4∈C
(m)
ẑ
i′2

E[
W2

i1i4

∑
k∈C(m)

ẑi2

W2
ki3

|C(m)
ẑi2

|3
]E[

W2
i′1i

′
4

∑
k∈C(m)

ẑ
i′2

W2
ki′3

|C(m)
ẑi′2

|3
]|

≤ 4p4
m∑
i=1

(
|C(m)

i |
2

)
Cσ4

|C(m)
i |2

m∑
i=1

(
|C(m)

i |
2

)
Cσ4

|C(m)
i |2

= O(p4)

S.7.9 Type IIIb

Similar to the analysis for Type Ia above, we obtain |E[T2]| = 0 and E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Di2i3Di3i4S(P̃)i4i1Di′1i
′
2
Di′2i

′
3
Di′3i

′
4
S(P̃)i′4i′1 ] = 0.

S.7.10 Type IV

Similar to the analysis for Type IIIa above, we obtain |E[F ]| = O(p2) and E[
∑

(i1,i2,i3,i4,i′1,i
′
2,i

′
3,i

′
4)dist

Di1i2Di2i3Di3i4S(P̃)i4i1Di′1i
′
2
Di′2i

′
3
Di′3i

′
4
S(P̃)i′4i′1 ] = O(p4).

Thus, we have proved |E[Q(m,0)
N − Q̃

(m,0)
N ]| = O(σ4p2), Var(Q

(m,0)
N − Q̃

(m,0)
N ) = o(N8).
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Note that if m = K, then S(P̃) reduces to a zero matrix. Thus, any post-expansion

summand that involves S(P̃) is zero. Then it follows that

Q
(m,0)
N − Q̃

(m,0)
N = 4Y1 + 4Z1 + 2Z2 + 4T1 + F,

indicating that it suffices to analyze E[Y 2
1 ],E[Z2

1 ],E[Z2
2 ],E[T 2

1 ],E[F 2]. Based on preceding
results, we now focus on terms where the indices are not distinct.

Each post-expansion term is a convex combination of expressions of the form |E[
∏

1≤k≤n
1≤l≤p

Etkl
kl ]|

with
∑

1≤k≤n
1≤l≤p

tkl = 8. A nonzero contribution occurs only if 1 /∈ {tkl}1≤k≤n
1≤l≤p

, which implies

that each term contains at most 4 distinct entries of the matrix E. Therefore, it can be
seen that the contributions of most of the terms are zero. This is a key observation. The
main objective moving forward is to provide the upper bound on the number of non-zero
contributing terms in expanded forms of E[Y 2

1 ],E[Z2
1 ],E[Z2

2 ],E[T 2
1 ],E[F 2] respectively.

As a result, to ensure

E[Di1i2Wi2i3Wi3i4Wi4i1Di′1i
′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]

=E[

∑
k∈C(m)

ẑi1

Wki2

|C(m)
ẑi1

|
Wi2i3Wi3i4Wi4i1

∑
k∈C(m)

ẑ
i′1

Wki′2

|C(m)
ẑi′1

|
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]

̸=0,

it is necessary that #{Wi2i3 ,Wi3i4 ,Wi4i1 ,Wi′2i
′
3
,Wi′3i

′
4
,Wi′4i

′
1
} ≤ 4. SinceWi2i3 ,Wi3i4 ,Wi4i1

and Wi′2i
′
3
,Wi′3i

′
4
,Wi′4i

′
1
are distinct within their respective groups, we must also have

#{i1, i2, i3, i4, i′1, i′2, i′3, i′4} ≤ 5.

Furthermore, although numerous terms are present in Di1i2Di′1i
′
2
, only a subset of these

terms can contribute to E[Di1i2Wi2i3Wi3i4Wi4i1Di′1i
′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
]. This constraint arises

because the power of any Eij in the expression must exceed 2. Therefore, for terms in the
post-expansion of Di1i2Di′1i

′
2
to contribute, they must either satisfy this condition inherently

or appear within the set {Wi2i3 ,Wi3i4 ,Wi4i1 ,Wi′2i
′
3
,Wi′3i

′
4
,Wi′4i

′
1
}. Consequently, if i1, i′1 ≤

n, for example, at most |C(m)
ẑi′1

|I(zi1 = zi′1) +
(
4
2

)
terms can contribute. The result holds

analogously in other cases.
By Assumption 2 and Theorem 1, we have |C(m)

i | ≥ α0n for i = 1, . . . ,m. Therefore,
it follows that E[Di1i2Wi2i3Wi3i4Wi4i1Di′1i

′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
] = O( 1

N
). Consequently, we

obtain E[Y 2
1 ] = O(N4).

Next, we analyze E[Di1i2Di2i3Wi3i4Wi4i1Di′1i
′
2
Di′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
].

If #{Wi3i4 ,Wi4i1 ,Wi′3i
′
4
,Wi′4i

′
1
} = 4, then at most one term in the post-expansion of

Di1i2Di2i3Di′1i
′
2
Di′2i

′
3
can contribute. Thus, E[Di1i2Wi2i3Wi3i4Wi4i1Di′1i

′
2
Wi′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
] =

O
(

1
N4

)
, and we obtain E[Z2

1 ] = N7 ·O
(

1
N4

)
+O(N2) = O(N3).

If #{Wi3i4 ,Wi4i1 ,Wi′3i
′
4
,Wi′4i

′
1
} = 3, then exactly two of these terms have a power of 1.

In this case, on the order of N terms in the post-expansion of Di1i2Di2i3Di′1i
′
2
Di′2i

′
3
can con-

tribute, leading to E[Di1i2Di2i3Wi3i4Wi4i1Di′1i
′
2
Di′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
] = O

(
1
N3

)
. Consequently,

E[Z2
1 ] = N7 ·O

(
1
N3

)
+O(N2) = O(N4).
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If #{Wi3i4 ,Wi4i1 ,Wi′3i
′
4
,Wi′4i

′
1
} = 2, then #{i1, i2, i3, i4, i′1, i′2, i′3, i′4} ≤ 5. Here, terms

in the expansion of Di1i2Di2i3Di′1i
′
2
Di′2i

′
3
need only satisfy the condition that powers of Eij in

them are not 1, without requiring to ensure powers of {Wi3i4 ,Wi4i1 ,Wi′3i
′
4
,Wi′4i

′
1
} are not

1. Therefore, on the order of N2 terms in the post-expansion of Di1i2Di2i3Di′1i
′
2
Di′2i

′
3
can

contribute, yielding E[Di1i2Di2i3Wi3i4Wi4i1Di′1i
′
2
Di′2i

′
3
Wi′3i

′
4
Wi′4i

′
1
] = O

(
1
N2

)
. Thus, E[Z2

1 ] =

N5 ·O
(

1
N2

)
+O(N2) = O(N3).

Combining these results, we conclude that E[Z2
1 ] = O(N4).

Note that our proof does not depend on the order of D and W; therefore, we also have
E[Z2

2 ] = O(N4).
Finally, we analyze E[Di1i2Di2i3Di3i4Wi4i1Di′1i

′
2
Di′2i

′
3
Di′3i

′
4
Wi′4i

′
1
] and E[Di1i2Di2i3Di3i4Di4i1

Di′1i
′
2
Di′2i

′
3
Di′3i

′
4
Di′4i

′
1
] using a similar approach. Although both Di1i2Di2i3Di3i4Di′1i

′
2
Di′2i

′
3
Di′3i

′
4

and Di1i2Di2i3Di3i4Di4i1Di′1i
′
2
Di′2i

′
3
Di′3i

′
4
Di′4i

′
1
contain numerous terms, it is easy to verify only

on the order of at most N3 and N4 terms, respectively, can contribute. Since we now only
need to consider post-expansion terms in E[T 2

1 ] and E[F 2] where indices are not distinct, and
there are only on the order of N7 such terms, it follows that E[F 2] = O(N4).

By combining the means of these terms, we deduce that E[(Q(m,0)
N − Q̃

(m,0)
N )2] = O(N4).

This concludes the proof of Lemmas S.2 and S.5.

S.8 Proof of Theorem 1

We need two main theorems.

Theorem S.1. Consider the settings and assumptions in Section 3, and suppose P =
UΣVT , X = P + E = UXΣXV

T
X. We define HU := UT

XU and HV := VT
XV. With

probability at least 1−O(N−5), one has

max
{
∥UXsgn(HU)−U∥2,∞, ∥VXsgn(HV)−V∥2,∞

}
≲

κ(P)
√
N

σK
, (S.2)

provided that σK = ω(κ(P)σ
√
N)

Proof. Since each Eij is now generated from a sub-exponential distribution, it follows directly

that there exists an event BN such that P(Bc
N) ≤ N2 exp

(
−N0.4

Cσ

)
as N → ∞, and on the

event BN , we have |Eij| ≤ N0.4. Consequently, we can replicate the analysis employed in
the proof of Theorem 4.4 in Chen et al. (2021) to establish the desired result.

Remark 9. In the proof of Chen et al. (2021), the authors assume that |Eij| ≤ B, where

B = O
(
σ
√

K
log(N)

∥U∥22,∞
)
, which does not align with our setting here. However, by setting

B = N0.4/ log(N) and following a similar line of reasoning, we can establish the desired
conclusion. Given the tedious nature of the details, which are almost identical to those
presented in Chen et al. (2021), we omit them here.

Definition 2 (Distance-based metrics defined by bottom up pruning). Fixing K > 1 and
1 < m ≤ K, consider a K × (m − 1) matrix U = [u1,u2, . . . ,uK ]

T . First, let dK(U)
be the minimum pairwise distance of all K rows. Second, let uk and uℓ (k < ℓ) be the
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pair that satisfies ∥uk − uℓ∥ = dK(U) (if this holds for multiple pairs, pick the first pair
in the lexicographical order). Remove row ℓ from the matrix U and let dK−1(U) be the
minimum pairwise distance for the remaining (K − 1) rows. Repeat this step and define
dK−2(U), dK−3(U), . . . , d2(U) recursively. Note that dK(U) ≤ dK−1(U) ≤ . . . ≤ d2(U).

Theorem S.2 (Theorem 4.1 in Jin et al. (2022)). Fix 1 < m ≤ K and let n be sufficiently
large. Consider the non-stochastic vectors x1, . . . ,xn that take only K values in u1, . . . ,uK.
Write U = [u1, . . . ,uK ]

T . Let Fk = {1 ≤ i ≤ n : xi = uk}, 1 ≤ k ≤ K. Suppose for some
constants 0 < α0 < 1 and C0 > 0, min1≤k≤K |Fk| ≥ α0n and max1≤k≤K ∥uk∥ ≤ C0 · dm(U).
We apply the k-means clustering to a set of n points x̂1, x̂2, . . . , x̂n assuming ≤ m clusters,
and denote by Ŝ1, Ŝ2, . . . , Ŝm the obtained clusters (if the solution is not unique, pick any
of them). There exists a constant c > 0, which only depends on (α0, C0,m), such that, if

max1≤i≤n ∥x̂i−xi∥ ≤ c ·dm(U), then #
{
1 ≤ j ≤ m : Ŝj ∩Fk ̸= ∅

}
= 1, for each 1 ≤ k ≤ K.

Now let’s return to our original question.
For a matrix A, A1:m denotes the first m columns of A. By Theorem S.1, we have the

following lemma.

Lemma S.7. As N → ∞, with probability 1 − O(N−5), there exists an orthogonal K ×K

matrix O such that ||ri((UX)1:m)−ri((UO)1:m)|| ≤ ||ri((UX)1:K)−ri((UO)1:K)|| ≤ C κ(P)
√
N

λK
for each 1 ≤ i ≤ n.

Note that the matrix P has only K distinct rows, and similarly, U also contains K
distinct rows. Consequently, for each 1 ≤ m ≤ K, the submatrix (UO)1:m consists of at
most K distinct rows. Therefore, we can select K distinct rows from (UO)1:m to construct
new matrices, denoted as (U(K)(O))1:m. Specifically, the construction process involves first
selecting K distinct rows from U, multiplying these rows by O, and then extracting the first
m columns of the resulting product.

To prove Theorem 1, we apply Lemma S.7 with U = (U(K)(O))1:m, xi = ri((UO)1:m),
and x̂i = ri((UX)1:m), and the main condition we need is c1 ≤ dm((U

(K)(O))1:m) uniformly
for all O. This is the following lemma.

Lemma S.8. Fix 1 ≤ m ≤ K. Then there exists a constant C > 0 such that

minO∈OK×K{dm((U(K)(O))1:m)} ≥ C.

Proof. Below, we fix 1 < m ≤ K and aK×K orthogonal matrixO, and study dm((U
(K)(O))1:m).

We apply a bottom up pruning procedure to (U(K)(O))1:m. First, we find two rows
rk((U

(K)(O))1:m) and rk((U
(K)(O))1:m) that attain the minimum pairwise distance (if there is

a tie, pick the first pair in the lexicographical order) and change the l-th row to rk((U
(K)(O))1:m)

(suppose k < l). Denote the resulting matrix by (U(K−1)(O))1:m. Next, we consider the rows
of (U(K−1)(O))1:m and similarly find two rows attaining the minimum pairwise distance and
replace one row by the other. Denote the resulting matrix by (U(K−2)(O))1:m.

We repeat these steps to get a sequence of matrices:

(U(K)(O))1:m, (U
(K−1)(O))1:m, (U

(K−2)(O))1:m, . . . , (U
(2)(O))1:m, (U

(1)(O))1:m,
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where for each 1 ≤ k ≤ K, (U(k)(O))1:m has at most k distinct rows. Comparing it with the
Definition 2, we find that (U(k−1)(O))1:m differs from (U (k)(O))1:m in only 1 row, and the
difference on this row is a vector whose Euclidean norm is exactly dk((U

(K)(O))1:m). As a
result,

∥(U(k)(O))1:m − (U(k−1)(O))1:m∥ = dk((U
(K)(O))1:m), 2 ≤ k ≤ K.

By triangle inequality and the fact that dk((U
(K)(O))1:m) ≤ dk−1((U

(K)(O))1:m), we have

∥(U(K)(O))1:m−(U(m−1)(O))1:m∥ ≤
K∑
k=m

dk((U
(K)(O))1:m) ≤ (K−m+1)·dm((U(K)(O))1:m).

To show the claim, it suffices to show that

∥(U(K)(O))1:m − (U(m−1)(O))1:m∥ ≥ C.

Since (U(m−1)(O))1:m has at most m− 1 distinct rows, its rank is at most m− 1. Addi-
tionally, since (U(K)(O))T1:m(U

(K)(O))1:m = Im, it follows that σm((U
(K)(O))1:m) = 1

We now combine the results above and apply Weyl’s inequality for singular values Horn
and Johnson (1985)[Corollary 7.3.5]. It gives

1 ≤ σm((U
(K)(O))1:m)− σm((U

(m−1)(O))1:m) ≤ ∥(U(K)(O))1:m − (U(m−1)(O))1:m∥.

The claim follows immediately.
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